23,004 research outputs found

    Diffusion Approximations for Online Principal Component Estimation and Global Convergence

    Full text link
    In this paper, we propose to adopt the diffusion approximation tools to study the dynamics of Oja's iteration which is an online stochastic gradient descent method for the principal component analysis. Oja's iteration maintains a running estimate of the true principal component from streaming data and enjoys less temporal and spatial complexities. We show that the Oja's iteration for the top eigenvector generates a continuous-state discrete-time Markov chain over the unit sphere. We characterize the Oja's iteration in three phases using diffusion approximation and weak convergence tools. Our three-phase analysis further provides a finite-sample error bound for the running estimate, which matches the minimax information lower bound for principal component analysis under the additional assumption of bounded samples.Comment: Appeared in NIPS 201

    A note on Probably Certifiably Correct algorithms

    Get PDF
    Many optimization problems of interest are known to be intractable, and while there are often heuristics that are known to work on typical instances, it is usually not easy to determine a posteriori whether the optimal solution was found. In this short note, we discuss algorithms that not only solve the problem on typical instances, but also provide a posteriori certificates of optimality, probably certifiably correct (PCC) algorithms. As an illustrative example, we present a fast PCC algorithm for minimum bisection under the stochastic block model and briefly discuss other examples

    DROP: Dimensionality Reduction Optimization for Time Series

    Full text link
    Dimensionality reduction is a critical step in scaling machine learning pipelines. Principal component analysis (PCA) is a standard tool for dimensionality reduction, but performing PCA over a full dataset can be prohibitively expensive. As a result, theoretical work has studied the effectiveness of iterative, stochastic PCA methods that operate over data samples. However, termination conditions for stochastic PCA either execute for a predetermined number of iterations, or until convergence of the solution, frequently sampling too many or too few datapoints for end-to-end runtime improvements. We show how accounting for downstream analytics operations during DR via PCA allows stochastic methods to efficiently terminate after operating over small (e.g., 1%) subsamples of input data, reducing whole workload runtime. Leveraging this, we propose DROP, a DR optimizer that enables speedups of up to 5x over Singular-Value-Decomposition-based PCA techniques, and exceeds conventional approaches like FFT and PAA by up to 16x in end-to-end workloads
    • …
    corecore