81,491 research outputs found

    Near-Optimal Source Placement for Linear Physical Fields

    Get PDF
    In real-word applications, signal processing is often used to measure and control a physical field by means of sensors and sources, respectively. An aspect that has been often neglected is the optimization of the sources' locations. In this work, we discuss the source placement problem as the dual of the sensor placement problem and propose two polynomial-time algorithms, for scenarios with or without noise. Both algorithms are near-optimal and indicate the possibility to make the control of such physical fields easier, more efficient and stabler to noise

    Judiciously distributing laser emitters to shape the desired far field patterns

    Get PDF
    The far-field pattern of a simple one-dimensional laser array of emitters radiating into free space is considered. In the path of investigating the inverse problem for their near fields leading to a target beam form, surprisingly we found that the result is successful when the matrix of the corresponding linear system is not well-scaled. The essence of our numerical observations is captured by an elegant inequality defining the functional range of the optical distance between two neighboring emitters. Our finding can restrict substantially the parametric space of integrated photonic systems and simplify significantly the subsequent optimizations

    Deploy-As-You-Go Wireless Relay Placement: An Optimal Sequential Decision Approach using the Multi-Relay Channel Model

    Full text link
    We use information theoretic achievable rate formulas for the multi-relay channel to study the problem of as-you-go deployment of relay nodes. The achievable rate formulas are for full-duplex radios at the relays and for decode-and-forward relaying. Deployment is done along the straight line joining a source node and a sink node at an unknown distance from the source. The problem is for a deployment agent to walk from the source to the sink, deploying relays as he walks, given that the distance to the sink is exponentially distributed with known mean. As a precursor, we apply the multi-relay channel achievable rate formula to obtain the optimal power allocation to relays placed along a line, at fixed locations. This permits us to obtain the optimal placement of a given number of nodes when the distance between the source and sink is given. Numerical work suggests that, at low attenuation, the relays are mostly clustered near the source in order to be able to cooperate, whereas at high attenuation they are uniformly placed and work as repeaters. We also prove that the effect of path-loss can be entirely mitigated if a large enough number of relays are placed uniformly between the source and the sink. The structure of the optimal power allocation for a given placement of the nodes, then motivates us to formulate the problem of as-you-go placement of relays along a line of exponentially distributed length, and with the exponential path-loss model, so as to minimize a cost function that is additive over hops. The hop cost trades off a capacity limiting term, motivated from the optimal power allocation solution, against the cost of adding a relay node. We formulate the problem as a total cost Markov decision process, establish results for the value function, and provide insights into the placement policy and the performance of the deployed network via numerical exploration.Comment: 21 pages. arXiv admin note: substantial text overlap with arXiv:1204.432

    One-bit Distributed Sensing and Coding for Field Estimation in Sensor Networks

    Full text link
    This paper formulates and studies a general distributed field reconstruction problem using a dense network of noisy one-bit randomized scalar quantizers in the presence of additive observation noise of unknown distribution. A constructive quantization, coding, and field reconstruction scheme is developed and an upper-bound to the associated mean squared error (MSE) at any point and any snapshot is derived in terms of the local spatio-temporal smoothness properties of the underlying field. It is shown that when the noise, sensor placement pattern, and the sensor schedule satisfy certain weak technical requirements, it is possible to drive the MSE to zero with increasing sensor density at points of field continuity while ensuring that the per-sensor bitrate and sensing-related network overhead rate simultaneously go to zero. The proposed scheme achieves the order-optimal MSE versus sensor density scaling behavior for the class of spatially constant spatio-temporal fields.Comment: Fixed typos, otherwise same as V2. 27 pages (in one column review format), 4 figures. Submitted to IEEE Transactions on Signal Processing. Current version is updated for journal submission: revised author list, modified formulation and framework. Previous version appeared in Proceedings of Allerton Conference On Communication, Control, and Computing 200
    corecore