70,487 research outputs found

    Lossless and near-lossless source coding for multiple access networks

    Get PDF
    A multiple access source code (MASC) is a source code designed for the following network configuration: a pair of correlated information sequences {X-i}(i=1)(infinity), and {Y-i}(i=1)(infinity) is drawn independent and identically distributed (i.i.d.) according to joint probability mass function (p.m.f.) p(x, y); the encoder for each source operates without knowledge of the other source; the decoder jointly decodes the encoded bit streams from both sources. The work of Slepian and Wolf describes all rates achievable by MASCs of infinite coding dimension (n --> infinity) and asymptotically negligible error probabilities (P-e((n)) --> 0). In this paper, we consider the properties of optimal instantaneous MASCs with finite coding dimension (n 0) performance. The interest in near-lossless codes is inspired by the discontinuity in the limiting rate region at P-e((n)) = 0 and the resulting performance benefits achievable by using near-lossless MASCs as entropy codes within lossy MASCs. Our central results include generalizations of Huffman and arithmetic codes to the MASC framework for arbitrary p(x, y), n, and P-e((n)) and polynomial-time design algorithms that approximate these optimal solutions

    Multiresolution vector quantization

    Get PDF
    Multiresolution source codes are data compression algorithms yielding embedded source descriptions. The decoder of a multiresolution code can build a source reproduction by decoding the embedded bit stream in part or in whole. All decoding procedures start at the beginning of the binary source description and decode some fraction of that string. Decoding a small portion of the binary string gives a low-resolution reproduction; decoding more yields a higher resolution reproduction; and so on. Multiresolution vector quantizers are block multiresolution source codes. This paper introduces algorithms for designing fixed- and variable-rate multiresolution vector quantizers. Experiments on synthetic data demonstrate performance close to the theoretical performance limit. Experiments on natural images demonstrate performance improvements of up to 8 dB over tree-structured vector quantizers. Some of the lessons learned through multiresolution vector quantizer design lend insight into the design of more sophisticated multiresolution codes

    Single-shot compressed ultrafast photography: a review

    Get PDF
    Compressed ultrafast photography (CUP) is a burgeoning single-shot computational imaging technique that provides an imaging speed as high as 10 trillion frames per second and a sequence depth of up to a few hundred frames. This technique synergizes compressed sensing and the streak camera technique to capture nonrepeatable ultrafast transient events with a single shot. With recent unprecedented technical developments and extensions of this methodology, it has been widely used in ultrafast optical imaging and metrology, ultrafast electron diffraction and microscopy, and information security protection. We review the basic principles of CUP, its recent advances in data acquisition and image reconstruction, its fusions with other modalities, and its unique applications in multiple research fields

    Capacity Achieving Code Constructions for Two Classes of (d,k) Constraints

    Full text link
    In this paper, we present two low complexity algorithms that achieve capacity for the noiseless (d,k) constrained channel when k=2d+1, or when k-d+1 is not prime. The first algorithm, called symbol sliding, is a generalized version of the bit flipping algorithm introduced by Aviran et al. [1]. In addition to achieving capacity for (d,2d+1) constraints, it comes close to capacity in other cases. The second algorithm is based on interleaving, and is a generalized version of the bit stuffing algorithm introduced by Bender and Wolf [2]. This method uses fewer than k-d biased bit streams to achieve capacity for (d,k) constraints with k-d+1 not prime. In particular, the encoder for (d,d+2^m-1) constraints, 1\le m<\infty, requires only m biased bit streams.Comment: 16 pages, submitted to the IEEE Transactions on Information Theor

    Quantization as Histogram Segmentation: Optimal Scalar Quantizer Design in Network Systems

    Get PDF
    An algorithm for scalar quantizer design on discrete-alphabet sources is proposed. The proposed algorithm can be used to design fixed-rate and entropy-constrained conventional scalar quantizers, multiresolution scalar quantizers, multiple description scalar quantizers, and Wyner–Ziv scalar quantizers. The algorithm guarantees globally optimal solutions for conventional fixed-rate scalar quantizers and entropy-constrained scalar quantizers. For the other coding scenarios, the algorithm yields the best code among all codes that meet a given convexity constraint. In all cases, the algorithm run-time is polynomial in the size of the source alphabet. The algorithm derivation arises from a demonstration of the connection between scalar quantization, histogram segmentation, and the shortest path problem in a certain directed acyclic graph
    • …
    corecore