422 research outputs found

    Channel Estimation And Multiuser Detection In Asynchronous Satellite Communications

    Full text link
    In this paper, we propose a new method of channel estimation for asynchronous additive white Gaussian noise channels in satellite communications. This method is based on signals correlation and multiuser interference cancellation which adopts a successive structure. Propagation delays and signals amplitudes are jointly estimated in order to be used for data detection at the receiver. As, a multiuser detector, a single stage successive interference cancellation (SIC) architecture is analyzed and integrated to the channel estimation technique and the whole system is evaluated. The satellite access method adopted is the direct sequence code division multiple access (DS CDMA) one. To evaluate the channel estimation and the detection technique, we have simulated a satellite uplink with an asynchronous multiuser access.Comment: 14 pages, 9 figure

    Multiuser Detection and Channel Estimation for Multibeam Satellite Communications

    Full text link
    In this paper, iterative multi-user detection techniques for multi-beam communications are presented. The solutions are based on a successive interference cancellation architecture and a channel decoding to treat the co-channel interference. Beams forming and channels coefficients are estimated and updated iteratively. A developed technique of signals combining allows power improvement of the useful received signal; and then reduction of the bit error rates with low signal to noise ratios. The approach is applied to a synchronous multi-beam satellite link under an additive white Gaussian channel. Evaluation of the techniques is done with computer simulations, where a noised and multi-access environment is considered. The simulations results show the good performance of the proposed solutions.Comment: 12 page

    Beamforming and Multiuser Detection in CDMA Systems with External Interferences

    Get PDF
    Multiuser detection has been investigated to mitigate the near-far effect in CDMA systems. Antenna arrays have been shown to provide spatial diversity and cancel undesired signals. In this paper we consider the synergy of both multiuser detection and antenna arrays for the base station of a CDMA system. The receiver we proposed consists of the known multiuser decorrelator, which cancels multiple-access interferences followed by a beamformer for each user, which cancels the external interferences. This receiver adds an extra branch to the decorrelator. This additional branch, corresponding to a fictitious user with an unused code and zero power, allows to estimate the external interference signal subspace and compute a suitable beamforming weight-vector that cancels the external interferences. The receiver is also extended to the asynchronous case and all of this without any training signal or any a priori spatial information.Peer ReviewedPostprint (published version

    Asynchronous CDMA Systems with Random Spreading-Part I: Fundamental Limits

    Full text link
    Spectral efficiency for asynchronous code division multiple access (CDMA) with random spreading is calculated in the large system limit allowing for arbitrary chip waveforms and frequency-flat fading. Signal to interference and noise ratios (SINRs) for suboptimal receivers, such as the linear minimum mean square error (MMSE) detectors, are derived. The approach is general and optionally allows even for statistics obtained by under-sampling the received signal. All performance measures are given as a function of the chip waveform and the delay distribution of the users in the large system limit. It turns out that synchronizing users on a chip level impairs performance for all chip waveforms with bandwidth greater than the Nyquist bandwidth, e.g., positive roll-off factors. For example, with the pulse shaping demanded in the UMTS standard, user synchronization reduces spectral efficiency up to 12% at 10 dB normalized signal-to-noise ratio. The benefits of asynchronism stem from the finding that the excess bandwidth of chip waveforms actually spans additional dimensions in signal space, if the users are de-synchronized on the chip-level. The analysis of linear MMSE detectors shows that the limiting interference effects can be decoupled both in the user domain and in the frequency domain such that the concept of the effective interference spectral density arises. This generalizes and refines Tse and Hanly's concept of effective interference. In Part II, the analysis is extended to any linear detector that admits a representation as multistage detector and guidelines for the design of low complexity multistage detectors with universal weights are provided

    Multi-user detection for multi-rate DS/CDMA systems

    Get PDF
    Wireless cellular communication is witnessing a rapid growth in market, technology and range of services. Current and future demands for wireless communication services motivate the need for handling multi-media traffic types. In a multimedia communication system, users with different and even time-varying rates and quality of services (QoS) requirements, such as voice, image and data, must be accommodated. The use of Spread Spectrum modulation with Code Division Multiple Access (CDMA) technology is an attractive approach for economical spectrally efficient and high quality cellular and personal communication services. This dissertation explores the technologies of applying different interference cancellation techniques to multi-rate CDMA systems that serve users with different QoS. Multiple Access Interference (MAI) and multipath propagation are the major issues in wireless communication systems. It is also true for multi-rate CDMA systems. Multi-user detection has been shown to be effective in combating the near-far problem and providing superior performance over conventional detection method. In this dissertation, we combine both linear minimum mean squared error (LMMSE) detector, nonlinear decision feedback detector, with other signal processing techniques, such as array processing and multipath combining, to create effective near-far resistant detectors for multi-rate CDMA systems. Firstly, we propose MMSE receivers for synchronous multi-rate CDMA system and compare the performance with the corresponding multi-rate decorrelating detectors. The multi-rate decorrelating detector is optimally near-far resistant and easy to implement. The proposed linear MMSE multi-rate receiver can be adaptively implemented only with the knowledge of the desired user. Due to the fact that MMSE detector offers best trade-off between the MAI cancellation and noise variance enhancement, it is shown that multi-rate MMSE receiver can offer better performance than the multi-rate decorrelator when the interfering users\u27 Signal to Noise Ratio (SNR) is relatively low comparing to the desired user\u27s SNR. Secondly, the asynchronous multi-rate CDMA system, we propose multi-rate multi-shoot decorrelating detectors and multi-rate multi-shot MMSE detectors. The performance of multi-shot detectors can be improved monotonically with increasing the number of stacked bits, but a great computational complexity is going to be introduced in order to get better performance. A debiasing method is introduced to multi-rate multi-shot linear detectors. Debiasing method optimizes multi-rate detectors based on the multi-rate multi-shot model. Debiasing multi-shot MMSE detector for multi-rate signals can offer performance than the corresponding debiasing multi-shot decorrelating detector. Thirdly, we propose linear space-time receivers for multi-rate CDMA systems. The minimum mean-squared error criteria is used. We perform a comparative study on the multi-rate receiver which uses either multipath (temporal) processing or array (spatial) processing, and the one which uses both array and multipath (space-time) processing. The space-time receiver for the multi-rate CDMA signals give us the potential of improving the capacity of multi-rate systems. The space-time processing combined with multiuser detection have the advantages of combating multipath fading through temporal processing, reducing MAI through MMSE method and provide antenna or diversity gain through spatial processing and increasing the capacity of the multi-rate CDMA systems. Lastly, the group-wise interference cancellation methods are proposed for multi-rate CDMA signals. The non-linear decision feedback detection (DFD) schemes are used in the proposed receivers. The proposed interference cancellation schemes benefit from the nature of the unequal received amplitudes for multi-rate CDMA signals. Users with same data rate are grouped together. Users with the highest data-rate are detected first. Interference between the groups is cancelled in a successive order. The results show that the group-wise MMSE DFD yields better performance than multi-rate linear MMSE detector and multi-rate decorrelating detector, especially for highly loaded CDMA systems

    Phase-locked loop, delay-locked loop, and linear decorrelating detector for asynchronous multirate DS-CDMA system

    Get PDF
    The performance of phase synchronization and code tracking of a digital phase-locked loop (PLL) and delay-locked loop (DLL), respectively, is investigated in wideband asynchronous multirate DS-CDMA system. Dynamic Partial Correlation (DPC) method is proposed to evaluate the autocorrelation and its power spectrum density (PSD) of the cross-correlated terms in the presence of multirate multiple access interference (MMAI) under additive white gaussian noise (AWGN) and fading channel environments. The steady-state probability density function (PDF) and variance of the phase estimator error and code tracking jitter is evaluated by solving the first-order Fokker-Planck equation. Among many linear multiuser detectors which decouple the multiple access interference from each of the interfering users, one-shot window linear decorrelating detector (LDD) based on a one bit period to reduce the complexity of the LDD has attracted wide attention as an implementation scheme. Therefore, we propose Hybrid Selection Diversity/ Maximal Ratio Combining (Hybrid SD/MRC) one-shot window linear decorrelating detector (LDD) for asynchronous DS-CDMA systems. The selection diversity scheme at the input of the Hybrid SD/MRC LDD is based on choosing the branch with the maximum signal-to-noise ratio (SNR) of all filter outputs. The MR Combining scheme at the output of the Hybrid SD/MRC LDD adopts to maximize the output SNR and thus compensates for the enhanced output noise. The Hybrid SD/MRC one-shot LDD with PLL is introduced to track its phase error and to improve the demodulation performance. The probability density functions of the maximum SNR of the SD combiner, the near-far resistance (NFR) of one-shot LDD by Gaussian approximation, and the maximum SNR of the MR combiner for Hybrid SD/MRC LDD are evaluated, and the bit error probability is obtained from these pdfs. The performance of Hybrid SD/MRC one-shot LDD is assessed in a Rayleigh fading channel

    A joint multi user detection scheme for UWB sensor networks using waveform division multiple access

    Get PDF
    A joint multiuser detection (MUD) scheme for wireless sensor networks (WSNs) is proposed to suppress multiple access interference (MAI) caused by a large number of sensor nodes. In WSNs, waveform division multiple access ultra-wideband (WDMA-UWB) technology is well-suited for robust communications. Multiple sensor nodes are allowed to transmit modulated signals by sharing the same time periods and frequency bands using orthogonal pulse waveforms. This paper employs a mapping function based on the optimal multiuser detection (OMD) to map the received bits into the mapping space where error bits can be distinguished. In order to revise error bits caused by MAI, the proposed joint MUD scheme combines the mapping function with suboptimal algorithms. Numerical results demonstrate that the proposed MUD scheme provides good performances in terms of suppressing MAI and resisting near-far effect with low computational complexity

    Multiuser Detection For Asynchronous ARGOS Signals

    Get PDF
    In this paper, we investigate the application of multiuser detection techniques to a Low Polar Orbit (LPO) mobile satellite used in the ARGOS system. These techniques are used to mitigate the multiple access interference in the uplink transmission of the system. Unlike CDMA, due to the Doppler Effect, each signal has a different received carrier frequency and a different propagation delay. Multiuser detection techniques are proposed for asynchronous transmission in ARGOS system: the maximum likelihood detector, the conventional detector, and the sequential interference cancellation detector, as solutions to tackle the interference effects. Bit Error Rate performance graphs are shown for these techniques

    Adaptive DS-CDMA multiuser detection for time variant frequency selective Rayleigh fading channel

    Get PDF
    The current digital wireless mobile system such as IS-95, which is based on direct sequence Code Division Multiple Access (DS-CDMA) technology, will not be able to meet the growing demands for multimedia service due to low information exchanging rate. Its capacity is also limited by multiple accessed interference (MAI) signals. This work focuses on the development of adaptive algorithms for multiuser detection (MUD) and interference suppression for wideband direct sequence code division multiple access (DS-CDMA) systems over time-variant frequency selective fading channels. In addition, channel acquisition and delay estimation techniques are developed to combat the uncertainty introduced by the wireless propagation channel. This work emphasizes fast and simple techniques that can meet practical needs for high data rate signal detection. Most existing literature is not suitable for the large delay spread in wideband systems due to high computational/ hardware complexity. A de-biasing decorrelator is developed whose computational complexity is greatly reduced without sacrificing performance. An adaptive bootstrap symbolbased signal separator is also proposed for a time-variant channel. These detectors achieve MUD for asynchronous, large delay spread, fading channels without training sequences. To achieve high data rate communication, a finite impulse response (FIR) filter based detector is presented for M-ary QAM modulated signals in a multipath Rayleigh fading channel. It is shown that the proposed detector provides a stable performance for QAM signal detection with unknown fading and phase shift. It is also shown that this detector can be easily extended to the reception of any M-ary quadrature modulated signal. A minimum variance decorrelating (MVD) receiver with adaptive channel estimator is presented in this dissertation. It provides comparable performance to a linear MMSE receiver even in a deep fading environment and can be implemented blindly. Using the MVD receiver as a building-block, an adaptive multistage parallel interference cancellation (PIC) scheme and a successive interference cancellation (SIC) scheme were developed. The total number of stages is kept at a minimum as a result of the accurate estimating of the interfering users at the earliest stages, which reduces the implementation complexity, as well as the processing delay. Jointly with the MVD receiver, a new transmit diversity (TD) scheme, called TD-MVD, is proposed. This scheme improves the performance without increasing the bandwidth. Unlike other TD techniques, this TDMVD scheme has the inherent advantage to overcome asynchronous multipath transmission. It brings flexibility in the design of TD antenna systems without restrict signal coordination among those multiple transmissions, and applicable for both existing and next generation of CDMA systems. A maximum likelihood based delay and channel estimation algorithm with reduced computational complexity is proposed. This algorithm uses a diagonal simplicity technique as well as the asymptotically uncorrelated property of the received signal in the frequency domain. In combination with oversampling, this scheme does not suffer from a singularity problem and the performance quickly approaches the Cramer-Rao lower bound (CRLB) while maintaining a computational complexity that is as low as the order of the signal dimension
    • …
    corecore