909,208 research outputs found

    Optical Properties of Graphene Nanoflakes: Shape Matters

    Get PDF
    In recent years there has been significant debate on whether the edge type of graphene nanoflakes (GNF) or graphene quantum dots (GQD) are relevant for their electronic structure, thermal stability and optical properties. Using computer simulations, we have proven that there is a fundamental difference in the calculated absorption spectra between samples of the same shape, similar size but different edge type, namely, armchair or zigzag edges. These can be explained by the presence of electronic structures near the Fermi level which are localized on the edges. These features are also evident from the dependence of band gap on the GNF size, which shows three very distinct trends for different shapes and edge geometries.Comment: 8 pages, 9 figures. Submitted to The Journal of Chemical Physic

    A homoclinic tangle on the edge of shear turbulence

    Full text link
    Experiments and simulations lend mounting evidence for the edge state hypothesis on subcritical transition to turbulence, which asserts that simple states of fluid motion mediate between laminar and turbulent shear flow as their stable manifolds separate the two in state space. In this Letter we describe a flow homoclinic to a time-periodic edge state. Its existence explains turbulent bursting through the classical Smale-Birkhoff theorem. During a burst, vortical structures and the associated energy dissipation are highly localized near the wall, in contrast to the familiar regeneration cycle

    Electronic Structures of Fe3xV_{3-x}V_x$Si Probed by Photoemission Spectroscopy

    Full text link
    The electronic structures of the Heusler type compounds Fe3xV_{3-x}V_x$Si in the concentration range between x = 0 and x = 1 have been probed by photoemission spectroscopy (PES). The observed shift of Si 2p core- level and the main valence band structres indicate a chemical potential shift to higher energy with increasing x. It is also clarified that the density of state at Fermi edge is owing to the collaboration of V 3d and Fe 3d derived states. Besides the decrease of the spectral intensity near Fermi edge with increasing x suggests the formation of pseudo gap at large x.Comment: 4 pages, 5 figures, 5 reference

    Magnetic substructure in the northern Fermi Bubble revealed by polarized WMAP emission

    Full text link
    We report a correspondence between giant, polarized microwave structures emerging north from the Galactic plane near the Galactic center and a number of GeV gamma-ray features, including the eastern edge of the recently-discovered northern Fermi Bubble. The polarized microwave features also correspond to structures seen in the all-sky 408 MHz total intensity data, including the Galactic center spur. The magnetic field structure revealed by the polarization data at 23 GHz suggests that neither the emission coincident with the Bubble edge nor the Galactic center spur are likely to be features of the local ISM. On the basis of the observed morphological correspondences, similar inferred spectra, and the similar energetics of all sources, we suggest a direct connection between the Galactic center spur and the northern Fermi Bubble.Comment: Accepted for publication in The Astrophysical Journal Letters after minor change

    Theory of self-assembled smectic-A "crenellated disks"

    Full text link
    Smectic-A monolayers self-assembled in aqueous solutions of chiral fd viruses and a polymer depletant have been shown to exhibit a variety of structures including large, flat disks and twisted ribbons. The virus particles twist near the edge of the structure in a direction determined by the chirality of the viruses. When fd viruses and their mutants of opposite chirality are mixed together in nearly equal amounts unusual structures referred to as "crenellated disks" can appear. These disks are achiral overall but the twist at the edge alternates between left- and right-handedness. To minimize the mismatch where the two regions of opposing twist meet, the "crenellated" structure exhibits cusps rising out of the plane of the monolayer. We use a phenomenological elastic theory previously applied to flat disks and twisted ribbons to analyze an analytic model proposed to describe the "crenellated" structure . When compared with flat, circular disks, we find that the model "crenellated disks" are stable or at least metastable in a wide region of the phase diagram spanned by the Gaussian curvature modulus and the edge energy modulus, with a large energy barrier separating the two structures. The director pattern and geometric parameters of the "crenellated disks" are found to be in qualitative agreement with experimental observations.Comment: 8 pages, 6 figure

    Various arsenic network structures in 112-type Ca1-xLaxFe1-yPdyAs2 revealed by synchrotron x-ray diffraction experiments

    Full text link
    Two novel 112-type palladium doped iron arsenides were synthesized and identified using comprehensive studies involving synchrotron x-ray diffraction and x-ray absorption near edge structure (XANES) experiments. Whereas in-plane arsenic zigzag chains were found in 112-type superconducting iron arsenide, Ca1-xLaxFeAs2 with maximum Tc = 34 K, deformed arsenic network structures appeared in 112-type materials such as longitudinal arsenics zigzag chains in CaFe1-yPdyAs2 (y ~ 0.51) and arsenic square sheets constructed via hypervalent bonding in Ca1-xLaxFe1-yPdyAs2 (x ~ 0.31, y ~ 0.30). As K-edge XANES spectra clarified the similar oxidization states around FeAs4 tetrahedrons, expecting us the possible parents for high Tc 112-type iron arsenide superconductors.Comment: 9 pages, 5 figure
    corecore