7 research outputs found

    Round- and Message-Optimal Distributed Graph Algorithms

    Full text link
    Distributed graph algorithms that separately optimize for either the number of rounds used or the total number of messages sent have been studied extensively. However, algorithms simultaneously efficient with respect to both measures have been elusive. For example, only very recently was it shown that for Minimum Spanning Tree (MST), an optimal message and round complexity is achievable (up to polylog terms) by a single algorithm in the CONGEST model of communication. In this paper we provide algorithms that are simultaneously round- and message-optimal for a number of well-studied distributed optimization problems. Our main result is such a distributed algorithm for the fundamental primitive of computing simple functions over each part of a graph partition. From this algorithm we derive round- and message-optimal algorithms for multiple problems, including MST, Approximate Min-Cut and Approximate Single Source Shortest Paths, among others. On general graphs all of our algorithms achieve worst-case optimal O~(D+n)\tilde{O}(D+\sqrt n) round complexity and O~(m)\tilde{O}(m) message complexity. Furthermore, our algorithms require an optimal O~(D)\tilde{O}(D) rounds and O~(n)\tilde{O}(n) messages on planar, genus-bounded, treewidth-bounded and pathwidth-bounded graphs.Comment: To appear in PODC 201

    Minor Excluded Network Families Admit Fast Distributed Algorithms

    Full text link
    Distributed network optimization algorithms, such as minimum spanning tree, minimum cut, and shortest path, are an active research area in distributed computing. This paper presents a fast distributed algorithm for such problems in the CONGEST model, on networks that exclude a fixed minor. On general graphs, many optimization problems, including the ones mentioned above, require Ω~(n)\tilde\Omega(\sqrt n) rounds of communication in the CONGEST model, even if the network graph has a much smaller diameter. Naturally, the next step in algorithm design is to design efficient algorithms which bypass this lower bound on a restricted class of graphs. Currently, the only known method of doing so uses the low-congestion shortcut framework of Ghaffari and Haeupler [SODA'16]. Building off of their work, this paper proves that excluded minor graphs admit high-quality shortcuts, leading to an O~(D2)\tilde O(D^2) round algorithm for the aforementioned problems, where DD is the diameter of the network graph. To work with excluded minor graph families, we utilize the Graph Structure Theorem of Robertson and Seymour. To the best of our knowledge, this is the first time the Graph Structure Theorem has been used for an algorithmic result in the distributed setting. Even though the proof is involved, merely showing the existence of good shortcuts is sufficient to obtain simple, efficient distributed algorithms. In particular, the shortcut framework can efficiently construct near-optimal shortcuts and then use them to solve the optimization problems. This, combined with the very general family of excluded minor graphs, which includes most other important graph classes, makes this result of significant interest
    corecore