1,336 research outputs found

    Mixed Precision Multi-frame Parallel Low-Density Parity-Check Code Decoder

    Get PDF
    As the demand for high speed and high quality connectivity is increasing exponentially, channels are getting more and more crowded. The need for a high performance and low error floor channel decoder is apparent. Low-density parity-check code (LDPC) is a linear error correction code that can reach near Shannon limit. In this work, LDPC code construction and decoding algorithms are discussed, the LDPC decoder, in fully parallel and partial parallel, was implemented, and the features and issues related to corresponding architecture are analyzed. Furthermore, a multi-frame processing approach, based on pipelining and out-of-order processing, is proposed. The implemented decoder achieves 12.6 Gbps at 3.0 dB SNR. The mixed precision scheme is explored by adding precision control and alignment units before and after check node units (CNU) to improve performance, as well as error floor. By mixing the 6-bit and 5-bit precision CNUs at 1:1 ratio, the decoder reaches ~0.5 dB lower FER and BER while retaining a low error floor

    Mixed Precision Multi-frame Parallel Low-Density Parity-Check Code Decoder

    Get PDF
    As the demand for high speed and high quality connectivity is increasing exponentially, channels are getting more and more crowded. The need for a high performance and low error floor channel decoder is apparent. Low-density parity-check code (LDPC) is a linear error correction code that can reach near Shannon limit. In this work, LDPC code construction and decoding algorithms are discussed, the LDPC decoder, in fully parallel and partial parallel, was implemented, and the features and issues related to corresponding architecture are analyzed. Furthermore, a multi-frame processing approach, based on pipelining and out-of-order processing, is proposed. The implemented decoder achieves 12.6 Gbps at 3.0 dB SNR. The mixed precision scheme is explored by adding precision control and alignment units before and after check node units (CNU) to improve performance, as well as error floor. By mixing the 6-bit and 5-bit precision CNUs at 1:1 ratio, the decoder reaches ~0.5 dB lower FER and BER while retaining a low error floor

    Sparse Graph Codes for Quantum Error-Correction

    Full text link
    We present sparse graph codes appropriate for use in quantum error-correction. Quantum error-correcting codes based on sparse graphs are of interest for three reasons. First, the best codes currently known for classical channels are based on sparse graphs. Second, sparse graph codes keep the number of quantum interactions associated with the quantum error correction process small: a constant number per quantum bit, independent of the blocklength. Third, sparse graph codes often offer great flexibility with respect to blocklength and rate. We believe some of the codes we present are unsurpassed by previously published quantum error-correcting codes.Comment: Version 7.3e: 42 pages. Extended version, Feb 2004. A shortened version was resubmitted to IEEE Transactions on Information Theory Jan 20, 200

    Low-Complexity Belief Propagation Decoding by Approximations with Lookup-Tables

    Get PDF
    Abstract — Belief propagation decoding of low-density parity-check codes or one-step majority logic decodable codes has been proven to be a very powerful coding scheme. In this paper an approximation for the belief propagation algorithm, also known as sumproduct decoding, is presented which uses correction functions, implemented as precomputed lookup-tables, to significantly reduce the computational complexity. The new lookup-sum algorithm requires no multiplications, divisions, exponential or logarithmic operations in the iterative process. Already for lookup-tables containing a single entry simulation results show that the performance of non-approximated belief propagation can be approached by 0.1 dB in / 0. With slightly larger tables a performance not noticeably differing from nonapproximated belief propagation can be achieved. I

    Initial synchronisation of wideband and UWB direct sequence systems: single- and multiple-antenna aided solutions

    No full text
    This survey guides the reader through the open literature on the principle of initial synchronisation in single-antenna-assisted single- and multi-carrier Code Division Multiple Access (CDMA) as well as Direct Sequence-Ultra WideBand (DS-UWB) systems, with special emphasis on the DownLink (DL). There is a paucity of up-to-date surveys and review articles on initial synchronization solutions for MIMO-aided and cooperative systems - even though there is a plethora of papers on both MIMOs and on cooperative systems, which assume perfect synchronization. Hence this paper aims to ?ll the related gap in the literature
    • 

    corecore