57,719 research outputs found
Abstracted navigational actions for improved hypermedia navigation and maintainance.
This paper discusses the MESH framework, which proposes a fully object-oriented approach to hypermedia. Object-oriented abstractions are not only applied to the conceptual data model, but also to the navigation paradigm. This results in the concept of context-based navigation, which reduces the end user's disorientation problem by means of dynamically generated, context-sensitive guided tours. Moreover, maintainability is greatly improved, as both nodes and links are defined as instances of abstract classes. I this way, single links and entire guided tours are anchored on type level as abstract navigational actions, which are independent of the actual link instances.Marketing; Data; Model;
Predicting the Next Best View for 3D Mesh Refinement
3D reconstruction is a core task in many applications such as robot
navigation or sites inspections. Finding the best poses to capture part of the
scene is one of the most challenging topic that goes under the name of Next
Best View. Recently, many volumetric methods have been proposed; they choose
the Next Best View by reasoning over a 3D voxelized space and by finding which
pose minimizes the uncertainty decoded into the voxels. Such methods are
effective, but they do not scale well since the underlaying representation
requires a huge amount of memory. In this paper we propose a novel mesh-based
approach which focuses on the worst reconstructed region of the environment
mesh. We define a photo-consistent index to evaluate the 3D mesh accuracy, and
an energy function over the worst regions of the mesh which takes into account
the mutual parallax with respect to the previous cameras, the angle of
incidence of the viewing ray to the surface and the visibility of the region.
We test our approach over a well known dataset and achieve state-of-the-art
results.Comment: 13 pages, 5 figures, to be published in IAS-1
Hierarchical path-finding for Navigation Meshes (HNA*)
Path-finding can become an important bottleneck as both the size of the virtual environments and the number of agents navigating them increase. It is important to develop techniques that can be efficiently applied to any environment independently of its abstract representation. In this paper we present a hierarchical NavMesh representation to speed up path-finding. Hierarchical path-finding (HPA*) has been successfully applied to regular grids, but there is a need to extend the benefits of this method to polygonal navigation meshes. As opposed to regular grids, navigation meshes offer representations with higher accuracy regarding the underlying geometry, while containing a smaller number of cells. Therefore, we present a bottom-up method to create a hierarchical representation based on a multilevel k-way partitioning algorithm (MLkP), annotated with sub-paths that can be accessed online by our Hierarchical NavMesh Path-finding algorithm (HNA*). The algorithm benefits from searching in graphs with a much smaller number of cells, thus performing up to 7.7 times faster than traditional A¿ over the initial NavMesh. We present results of HNA* over a variety of scenarios and discuss the benefits of the algorithm together with areas for improvement.Peer ReviewedPostprint (author's final draft
A model-based approach to hypermedia design.
This paper introduces the MESH approach to hypermedia design, which combines established entity-relationship and object-oriented abstractions with proprietary concepts into a formal hypermedia data model. Uniform layout and link typing specifications can be attributed and inherited in a static node typing hierarchy, whereas both nodes and links can be submitted dynamically to multiple complementary classifications. In addition, the data model's support for a context-based navigation paradigm, as well as a platform-independent implementation framework, are briefly discussed.Data; Model; Specifications; Classification;
GpsTunes: controlling navigation via audio feedback
We combine the functionality of a mobile Global Positioning System (GPS) with that of an MP3 player, implemented on a PocketPC, to produce a handheld system capable of guiding a user to their desired target location via continuously adapted music feedback. We illustrate how the approach to presentation of the audio display can benefit from insights from control theory, such as predictive 'browsing' elements to the display, and the appropriate representation of uncertainty or ambiguity in the display. The probabilistic interpretation of the navigation task can be generalised to other context-dependent mobile applications. This is the first example of a completely handheld location- aware music player. We discuss scenarios for use of such systems
Mesh-based 3D Textured Urban Mapping
In the era of autonomous driving, urban mapping represents a core step to let
vehicles interact with the urban context. Successful mapping algorithms have
been proposed in the last decade building the map leveraging on data from a
single sensor. The focus of the system presented in this paper is twofold: the
joint estimation of a 3D map from lidar data and images, based on a 3D mesh,
and its texturing. Indeed, even if most surveying vehicles for mapping are
endowed by cameras and lidar, existing mapping algorithms usually rely on
either images or lidar data; moreover both image-based and lidar-based systems
often represent the map as a point cloud, while a continuous textured mesh
representation would be useful for visualization and navigation purposes. In
the proposed framework, we join the accuracy of the 3D lidar data, and the
dense information and appearance carried by the images, in estimating a
visibility consistent map upon the lidar measurements, and refining it
photometrically through the acquired images. We evaluate the proposed framework
against the KITTI dataset and we show the performance improvement with respect
to two state of the art urban mapping algorithms, and two widely used surface
reconstruction algorithms in Computer Graphics.Comment: accepted at iros 201
MESH: an object-oriented approach to hypermedia modeling and navigation.
This paper introduces the MESH approach to hypermedia modeling and navigation, which aims at relieving the typical drawbacks of poor maintainability and user disorientation. The framework builds upon two fundamental concepts. The data model combines established entity-relationship and object-oriented abstractions with proprietary concepts into a formal hypermedia data model. Uniform layout and link typing specifications can be attributed and inherited in a static node typing hierarchy, whereas both nodes and links can be submitted dynamically to multiple complementary classifications. In the context-based navigation paradigm, conventional navigation along static links is complemented by run-time generated guided tours, which are derived dynamically from the context of a user's information requirements. The result is a two-dimensional navigation paradigm, which reconciles complete navigational freedom and flexibility with a measure of linear guidance. These specifications are captured in a high-level, platform independent implementation framework.Data; Model; Specifications; Classification; Information; Requirements;
- …
