1,074,180 research outputs found
Readers and Reading in the First World War
This essay consists of three individually authored and interlinked sections. In ‘A Digital Humanities Approach’, Francesca Benatti looks at datasets and databases (including the UK Reading Experience Database) and shows how a systematic, macro-analytical use of digital humanities tools and resources might yield answers to some key questions about reading in the First World War. In ‘Reading behind the Wire in the First World War’ Edmund G. C. King scrutinizes the reading practices and preferences of Allied prisoners of war in Mainz, showing that reading circumscribed by the contingencies of a prison camp created an unique literary community, whose legacy can be traced through their literary output after the war. In ‘Book-hunger in Salonika’, Shafquat Towheed examines the record of a single reader in a specific and fairly static frontline, and argues that in the case of the Salonika campaign, reading communities emerged in close proximity to existing centres of print culture. The focus of this essay moves from the general to the particular, from the scoping of large datasets, to the analyses of identified readers within a specific geographical and temporal space. The authors engage with the wider issues and problems of recovering, interpreting, visualizing, narrating, and representing readers in the First World War
Natural language processing
Beginning with the basic issues of NLP, this chapter aims to chart the major research activities in this area since the last ARIST Chapter in 1996 (Haas, 1996), including: (i) natural language text processing systems - text summarization, information extraction, information retrieval, etc., including domain-specific applications; (ii) natural language interfaces; (iii) NLP in the context of www and digital libraries ; and (iv) evaluation of NLP systems
Text content and task performance in the evaluation of a natural language generation system
An important question in the evaluation of Natural Language Generation systems concerns the relationship between textual characteristics and task performance. If the results of task-based evaluation can be correlated to properties of the text, there are better prospects for improving the system. The present paper investigates this relationship by focusing on the outcomes of a task-based evaluation of a system that generates summaries of patient data, attempting to correlate these with the results of an analysis of the system’s texts, compared to a set of gold standard human-authored summaries.peer-reviewe
Robust Processing of Natural Language
Previous approaches to robustness in natural language processing usually
treat deviant input by relaxing grammatical constraints whenever a successful
analysis cannot be provided by ``normal'' means. This schema implies, that
error detection always comes prior to error handling, a behaviour which hardly
can compete with its human model, where many erroneous situations are treated
without even noticing them.
The paper analyses the necessary preconditions for achieving a higher degree
of robustness in natural language processing and suggests a quite different
approach based on a procedure for structural disambiguation. It not only offers
the possibility to cope with robustness issues in a more natural way but
eventually might be suited to accommodate quite different aspects of robust
behaviour within a single framework.Comment: 16 pages, LaTeX, uses pstricks.sty, pstricks.tex, pstricks.pro,
pst-node.sty, pst-node.tex, pst-node.pro. To appear in: Proc. KI-95, 19th
German Conference on Artificial Intelligence, Bielefeld (Germany), Lecture
Notes in Computer Science, Springer 199
ABDN at SemEval-2018 Task 10 : recognising discriminative attributes using context embeddings and WordNet
This paper describes the system that we submitted for SemEval-2018 task 10: capturing discriminative attributes. Our system is built upon a simple idea of measuring the attribute word’s similarity with each of the two semantically similar words, based on an extended word embedding method and WordNet. Instead of computing the similarities between the attribute and semantically similar words by using standard word embeddings, we propose a novel method that combines word and context embeddings which can better measure similarities. Our model is simple and effective, which achieves an average F1 score of 0.62 on the test set
Software Infrastructure for Natural Language Processing
We classify and review current approaches to software infrastructure for
research, development and delivery of NLP systems. The task is motivated by a
discussion of current trends in the field of NLP and Language Engineering. We
describe a system called GATE (a General Architecture for Text Engineering)
that provides a software infrastructure on top of which heterogeneous NLP
processing modules may be evaluated and refined individually, or may be
combined into larger application systems. GATE aims to support both researchers
and developers working on component technologies (e.g. parsing, tagging,
morphological analysis) and those working on developing end-user applications
(e.g. information extraction, text summarisation, document generation, machine
translation, and second language learning). GATE promotes reuse of component
technology, permits specialisation and collaboration in large-scale projects,
and allows for the comparison and evaluation of alternative technologies. The
first release of GATE is now available - see
http://www.dcs.shef.ac.uk/research/groups/nlp/gate/Comment: LaTeX, uses aclap.sty, 8 page
- …
