29 research outputs found

    Protection of privacy in biometric data

    Full text link
    Biometrics is commonly used in many automated veri cation systems offering several advantages over traditional veri cation methods. Since biometric features are associated with individuals, their leakage will violate individuals\u27 privacy, which can cause serious and continued problems as the biometric data from a person are irreplaceable. To protect the biometric data containing privacy information, a number of privacy-preserving biometric schemes (PPBSs) have been developed over the last decade, but they have various drawbacks. The aim of this paper is to provide a comprehensive overview of the existing PPBSs and give guidance for future privacy-preserving biometric research. In particular, we explain the functional mechanisms of popular PPBSs and present the state-of-the-art privacy-preserving biometric methods based on these mechanisms. Furthermore, we discuss the drawbacks of the existing PPBSs and point out the challenges and future research directions in PPBSs

    Privacy in Biometric Systems

    Get PDF
    Biometrics are physiological and/or behavioral characteristics of a person that have been used to provide an automatic proof of identity in a growing list of applications including crime/terrorism fighting, forensics, access and border control, securing e-/m-commerce transactions and service entitlements. In recent years, a great deal of research into a variety of new and traditional biometrics has widened the scope of investigations beyond improving accuracy into mechanisms that deal with serious concerns raised about the potential misuse of collected biometric data. Despite the long list of biometrics’ benefits, privacy concerns have become widely shared due to the fact that every time the biometric of a person is checked, a trace is left that could reveal personal and confidential information. In fact, biometric-based recognition has an inherent privacy problem as it relies on capturing, analyzing, and storing personal data about us as individuals. For example, biometric systems deal with data related to the way we look (face, iris), the way we walk (gait), the way we talk (speaker recognition), the way we write (handwriting), the way we type on a keyboard (keystroke), the way we read (eye movement), and many more. Privacy has become a serious concern for the public as biometric systems are increasingly deployed in many applications ranging from accessing our account on a Smartphone or computer to border control and national biometric cards on a very large scale. For example, the Unique Identification Authority of India (UIDAI) has issued 56 million biometric cards as of January 2014 [1], where each biometric card holds templates of the 10 fingers, the two irises and the face. An essential factor behind the growing popularity of biometrics in recent years is the fact that biometric sensors have become a lot cheaper as well as easier to install and handle. CCTV cameras are installed nearly everywhere and almost all Smartphones are equipped with a camera, microphone, fingerprint scanner, and probably very soon, an iris scanner

    Securing Cloud Storage by Transparent Biometric Cryptography

    Get PDF
    With the capability of storing huge volumes of data over the Internet, cloud storage has become a popular and desirable service for individuals and enterprises. The security issues, nevertheless, have been the intense debate within the cloud community. Significant attacks can be taken place, the most common being guessing the (poor) passwords. Given weaknesses with verification credentials, malicious attacks have happened across a variety of well-known storage services (i.e. Dropbox and Google Drive) – resulting in loss the privacy and confidentiality of files. Whilst today's use of third-party cryptographic applications can independently encrypt data, it arguably places a significant burden upon the user in terms of manually ciphering/deciphering each file and administering numerous keys in addition to the login password. The field of biometric cryptography applies biometric modalities within cryptography to produce robust bio-crypto keys without having to remember them. There are, nonetheless, still specific flaws associated with the security of the established bio-crypto key and its usability. Users currently should present their biometric modalities intrusively each time a file needs to be encrypted/decrypted – thus leading to cumbersomeness and inconvenience while throughout usage. Transparent biometrics seeks to eliminate the explicit interaction for verification and thereby remove the user inconvenience. However, the application of transparent biometric within bio-cryptography can increase the variability of the biometric sample leading to further challenges on reproducing the bio-crypto key. An innovative bio-cryptographic approach is developed to non-intrusively encrypt/decrypt data by a bio-crypto key established from transparent biometrics on the fly without storing it somewhere using a backpropagation neural network. This approach seeks to handle the shortcomings of the password login, and concurrently removes the usability issues of the third-party cryptographic applications – thus enabling a more secure and usable user-oriented level of encryption to reinforce the security controls within cloud-based storage. The challenge represents the ability of the innovative bio-cryptographic approach to generate a reproducible bio-crypto key by selective transparent biometric modalities including fingerprint, face and keystrokes which are inherently noisier than their traditional counterparts. Accordingly, sets of experiments using functional and practical datasets reflecting a transparent and unconstrained sample collection are conducted to determine the reliability of creating a non-intrusive and repeatable bio-crypto key of a 256-bit length. With numerous samples being acquired in a non-intrusive fashion, the system would be spontaneously able to capture 6 samples within minute window of time. There is a possibility then to trade-off the false rejection against the false acceptance to tackle the high error, as long as the correct key can be generated via at least one successful sample. As such, the experiments demonstrate that a correct key can be generated to the genuine user once a minute and the average FAR was 0.9%, 0.06%, and 0.06% for fingerprint, face, and keystrokes respectively. For further reinforcing the effectiveness of the key generation approach, other sets of experiments are also implemented to determine what impact the multibiometric approach would have upon the performance at the feature phase versus the matching phase. Holistically, the multibiometric key generation approach demonstrates the superiority in generating the bio-crypto key of a 256-bit in comparison with the single biometric approach. In particular, the feature-level fusion outperforms the matching-level fusion at producing the valid correct key with limited illegitimacy attempts in compromising it – 0.02% FAR rate overall. Accordingly, the thesis proposes an innovative bio-cryptosystem architecture by which cloud-independent encryption is provided to protect the users' personal data in a more reliable and usable fashion using non-intrusive multimodal biometrics.Higher Committee of Education Development in Iraq (HCED

    The State-of-the-Art in Iris Biometric Cryptosystems

    Get PDF

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University, 05/08/2010.This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims

    Privacy protecting biometric authentication systems

    Get PDF
    As biometrics gains popularity and proliferates into the daily life, there is an increased concern over the loss of privacy and potential misuse of biometric data held in central repositories. The major concerns are about i) the use of biometrics to track people, ii) non-revocability of biometrics (eg. if a fingerprint is compromised it can not be canceled or reissued), and iii) disclosure of sensitive information such as race, gender and health problems which may be revealed by biometric traits. The straightforward suggestion of keeping the biometric data in a user owned token (eg. smart cards) does not completely solve the problem, since malicious users can claim that their token is broken to avoid biometric verification altogether. Put together, these concerns brought the need for privacy preserving biometric authentication methods in the recent years. In this dissertation, we survey existing privacy preserving biometric systems and implement and analyze fuzzy vault in particular; we propose a new privacy preserving approach; and we study the discriminative capability of online signatures as it relates to the success of using online signatures in the available privacy preserving biometric verification systems. Our privacy preserving authentication scheme combines multiple biometric traits to obtain a multi-biometric template that hides the constituent biometrics and allows the possibility of creating non-unique identifiers for a person, such that linking separate template databases is impossible. We provide two separate realizations of the framework: one uses two separate fingerprints of the same individual to obtain a combined biometric template, while the other one combines a fingerprint with a vocal pass-phrase. We show that both realizations of the framework are successful in verifying a person's identity given both biometric traits, while preserving privacy (i.e. biometric data is protected and the combined identifier can not be used to track people). The Fuzzy Vault emerged as a promising construct which can be used in protecting biometric templates. It combines biometrics and cryptography in order to get the benefits of both fields; while biometrics provides non-repudiation and convenience, cryptography guarantees privacy and adjustable levels of security. On the other hand, the fuzzy vault is a general construct for unordered data, and as such, it is not straightforward how it can be used with different biometric traits. In the scope of this thesis, we demonstrate realizations of the fuzzy vault using fingerprints and online signatures such that authentication can be done while biometric templates are protected. We then demonstrate how to use the fuzzy vault for secret sharing, using biometrics. Secret sharing schemes are cryptographic constructs where a secret is split into shares and distributed amongst the participants in such a way that it is constructed/revealed only when a necessary number of share holders come together (e.g. in joint bank accounts). The revealed secret can then be used for encryption or authentication. Finally, we implemented how correlation attacks can be used to unlock the vault; showing that further measures are needed to protect the fuzzy vault against such attacks. The discriminative capability of a biometric modality is based on its uniqueness/entropy and is an important factor in choosing a biometric for a large-scale deployment or a cryptographic application. We present an individuality model for online signatures in order to substantiate their applicability in biometric authentication. In order to build our model, we adopt the Fourier domain representation of the signature and propose a matching algorithm. The signature individuality is measured as the probability of a coincidental match between two arbitrary signatures, where model parameters are estimated using a large signature database. Based on this preliminary model and estimated parameters, we conclude that an average online signature provides a high level of security for authentication purposes. Finally, we provide a public online signature database along with associated testing protocols that can be used for testing signature verification system

    A dissimilarity representation approach to designing systems for signature verification and bio-cryptography

    Get PDF
    Automation of legal and financial processes requires enforcing of authenticity, confidentiality, and integrity of the involved transactions. This Thesis focuses on developing offline signature verification (OLSV) systems for enforcing authenticity of transactions. In addition, bio-cryptography systems are developed based on the offline handwritten signature images for enforcing confidentiality and integrity of transactions. Design of OLSV systems is challenging, as signatures are behavioral biometric traits that have intrinsic intra-personal variations and inter-personal similarities. Standard OLSV systems are designed in the feature representation (FR) space, where high-dimensional feature representations are needed to capture the invariance of the signature images. With the numerous users, found in real world applications, e.g., banking systems, decision boundaries in the high-dimensional FR spaces become complex. Accordingly, large number of training samples are required to design of complex classifiers, which is not practical in typical applications. In contrast, design of bio-cryptography systems based on the offline signature images is more challenging. In these systems, signature images lock the cryptographic keys, and a user retrieves his key by applying a query signature sample. For practical bio-cryptographic schemes, the locking feature vector should be concise. In addition, such schemes employ simple error correction decoders, and therefore no complex classification rules can be employed. In this Thesis, the challenging problems of designing OLSV and bio-cryptography systems are addressed by employing the dissimilarity representation (DR) approach. Instead of designing classifiers in the feature space, the DR approach provides a classification space that is defined by some proximity measure. This way, a multi-class classification problem, with few samples per class, is transformed to a more tractable two-class problem with large number of training samples. Since many feature extraction techniques have already been proposed for OLSV applications, a DR approach based on FR is employed. In this case, proximity between two signatures is measured by applying a dissimilarity measure on their feature vectors. The main hypothesis of this Thesis is as follows. The FRs and dissimilarity measures should be properly designed, so that signatures belong to same writer are close, while signatures of different writers are well separated in the resulting DR spaces. In that case, more cost-effecitive classifiers, and therefore simpler OLSV and bio-cryptography systems can be designed. To this end, in Chapter 2, an approach for optimizing FR-based DR spaces is proposed such that concise representations are discriminant, and simple classification thresholds are sufficient. High-dimensional feature representations are translated to an intermediate DR space, where pairwise feature distances are the space constituents. Then, a two-step boosting feature selection (BFS) algorithm is applied. The first step uses samples from a development database, and aims to produce a universal space of reduced dimensionality. The resulting universal space is further reduced and tuned for specific users through a second BFS step using user-specific training set. In the resulting space, feature variations are modeled and an adaptive dissimilarity measure is designed. This measure generates the final DR space, where discriminant prototypes are selected for enhanced representation. The OLSV and bio-cryptographic systems are formulated as simple threshold classifiers that operate in the designed DR space. Proof of concept simulations on the Brazilian signature database indicate the viability of the proposed approach. Concise DRs with few features and a single prototype are produced. Employing a simple threshold classifier, the DRs have shown state-of-the-art accuracy of about 7% AER, comparable to complex systems in the literature. In Chapter 3, the OLSV problem is further studied. Although the aforementioned OLSV implementation has shown acceptable recognition accuracy, the resulting systems are not secure as signature templates must be stored for verification. For enhanced security, we modified the previous implementation as follows. The first BFS step is implemented as aforementioned, producing a writer-independent (WI) system. This enables starting system operation, even if users provide a single signature sample in the enrollment phase. However, the second BFS is modified to run in a FR space instead of a DR space, so that no signature templates are used for verification. To this end, the universal space is translated back to a FR space of reduced dimensionality, so that designing a writer-dependent (WD) system by the few user-specific samples is tractable in the reduced space. Simulation results on two real-world offline signature databases confirm the feasibility of the proposed approach. The initial universal (WI) verification mode showed comparable performance to that of state-of-the-art OLSV systems. The final secure WD verification mode showed enhanced accuracy with decreased computational complexity. Only a single compact classifier produced similar level of accuracy (AER of about 5.38 and 13.96% for the Brazilian and the GPDS signature databases, respectively) as complex WI and WD systems in the literature. Finally, in Chapter 4, a key-binding bio-cryptographic scheme known as the fuzzy vault (FV) is implemented based on the offline signature images. The proposed DR-based two-step BFS technique is employed for selecting a compact and discriminant user-specific FR from a large number of feature extractions. This representation is used to generate the FV locking/unlocking points. Representation variability modeled in the DR space is considered for matching the unlocking and locking points during FV decoding. Proof of concept simulations on the Brazilian signature database have shown FV recognition accuracy of 3% AER and system entropy of about 45-bits. For enhanced security, an adaptive chaff generation method is proposed, where the modeled variability controls the chaff generation process. Similar recognition accuracy is reported, where more enhanced entropy of about 69-bits is achieved

    Privacy-Preserving Biometric Authentication

    Full text link
    Biometric-based authentication provides a highly accurate means of authentication without requiring the user to memorize or possess anything. However, there are three disadvantages to the use of biometrics in authentication; any compromise is permanent as it is impossible to revoke biometrics; there are significant privacy concerns with the loss of biometric data; and humans possess only a limited number of biometrics, which limits how many services can use or reuse the same form of authentication. As such, enhancing biometric template security is of significant research interest. One of the methodologies is called cancellable biometric template which applies an irreversible transformation on the features of the biometric sample and performs the matching in the transformed domain. Yet, this is itself susceptible to specific classes of attacks, including hill-climb, pre-image, and attacks via records multiplicity. This work has several outcomes and contributions to the knowledge of privacy-preserving biometric authentication. The first of these is a taxonomy structuring the current state-of-the-art and provisions for future research. The next of these is a multi-filter framework for developing a robust and secure cancellable biometric template, designed specifically for fingerprint biometrics. This framework is comprised of two modules, each of which is a separate cancellable fingerprint template that has its own matching and measures. The matching for this is based on multiple thresholds. Importantly, these methods show strong resistance to the above-mentioned attacks. Another of these outcomes is a method that achieves a stable performance and can be used to be embedded into a Zero-Knowledge-Proof protocol. In this novel method, a new strategy was proposed to improve the recognition error rates which is privacy-preserving in the untrusted environment. The results show promising performance when evaluated on current datasets

    Multibiometric security in wireless communication systems

    Get PDF
    This thesis has aimed to explore an application of Multibiometrics to secured wireless communications. The medium of study for this purpose included Wi-Fi, 3G, and WiMAX, over which simulations and experimental studies were carried out to assess the performance. In specific, restriction of access to authorized users only is provided by a technique referred to hereafter as multibiometric cryptosystem. In brief, the system is built upon a complete challenge/response methodology in order to obtain a high level of security on the basis of user identification by fingerprint and further confirmation by verification of the user through text-dependent speaker recognition. First is the enrolment phase by which the database of watermarked fingerprints with memorable texts along with the voice features, based on the same texts, is created by sending them to the server through wireless channel. Later is the verification stage at which claimed users, ones who claim are genuine, are verified against the database, and it consists of five steps. Initially faced by the identification level, one is asked to first present one’s fingerprint and a memorable word, former is watermarked into latter, in order for system to authenticate the fingerprint and verify the validity of it by retrieving the challenge for accepted user. The following three steps then involve speaker recognition including the user responding to the challenge by text-dependent voice, server authenticating the response, and finally server accepting/rejecting the user. In order to implement fingerprint watermarking, i.e. incorporating the memorable word as a watermark message into the fingerprint image, an algorithm of five steps has been developed. The first three novel steps having to do with the fingerprint image enhancement (CLAHE with 'Clip Limit', standard deviation analysis and sliding neighborhood) have been followed with further two steps for embedding, and extracting the watermark into the enhanced fingerprint image utilising Discrete Wavelet Transform (DWT). In the speaker recognition stage, the limitations of this technique in wireless communication have been addressed by sending voice feature (cepstral coefficients) instead of raw sample. This scheme is to reap the advantages of reducing the transmission time and dependency of the data on communication channel, together with no loss of packet. Finally, the obtained results have verified the claims.EThOS - Electronic Theses Online ServiceGBUnited Kingdo

    Secure Speech Biometric Templates

    Get PDF
    corecore