3,135 research outputs found

    Continuous Authentication for Voice Assistants

    Full text link
    Voice has become an increasingly popular User Interaction (UI) channel, mainly contributing to the ongoing trend of wearables, smart vehicles, and home automation systems. Voice assistants such as Siri, Google Now and Cortana, have become our everyday fixtures, especially in scenarios where touch interfaces are inconvenient or even dangerous to use, such as driving or exercising. Nevertheless, the open nature of the voice channel makes voice assistants difficult to secure and exposed to various attacks as demonstrated by security researchers. In this paper, we present VAuth, the first system that provides continuous and usable authentication for voice assistants. We design VAuth to fit in various widely-adopted wearable devices, such as eyeglasses, earphones/buds and necklaces, where it collects the body-surface vibrations of the user and matches it with the speech signal received by the voice assistant's microphone. VAuth guarantees that the voice assistant executes only the commands that originate from the voice of the owner. We have evaluated VAuth with 18 users and 30 voice commands and find it to achieve an almost perfect matching accuracy with less than 0.1% false positive rate, regardless of VAuth's position on the body and the user's language, accent or mobility. VAuth successfully thwarts different practical attacks, such as replayed attacks, mangled voice attacks, or impersonation attacks. It also has low energy and latency overheads and is compatible with most existing voice assistants

    Smart Home Personal Assistants: A Security and Privacy Review

    Get PDF
    Smart Home Personal Assistants (SPA) are an emerging innovation that is changing the way in which home users interact with the technology. However, there are a number of elements that expose these systems to various risks: i) the open nature of the voice channel they use, ii) the complexity of their architecture, iii) the AI features they rely on, and iv) their use of a wide-range of underlying technologies. This paper presents an in-depth review of the security and privacy issues in SPA, categorizing the most important attack vectors and their countermeasures. Based on this, we discuss open research challenges that can help steer the community to tackle and address current security and privacy issues in SPA. One of our key findings is that even though the attack surface of SPA is conspicuously broad and there has been a significant amount of recent research efforts in this area, research has so far focused on a small part of the attack surface, particularly on issues related to the interaction between the user and the SPA devices. We also point out that further research is needed to tackle issues related to authorization, speech recognition or profiling, to name a few. To the best of our knowledge, this is the first article to conduct such a comprehensive review and characterization of the security and privacy issues and countermeasures of SPA.Comment: Accepted for publication in ACM Computing Survey

    A Behavioral Model System for Implicit Mobile Authentication

    Get PDF
    Smartphones are increasingly essential to users’ everyday lives. Security concerns of data compromises are growing, and explicit authentication methods are proving to be inconvenient and insufficient. Meanwhile, users demand quicker and more secure authentication. To address this, a user can be authenticated continuously and implicitly, through understanding consistency in their behavior. This research project develops a Behavioral Model System (BMS) that records users’ behavioral metrics on an Android device and sends them to a server to develop a behavioral model for the user. Once a strong model is generated with TensorFlow, a user’s most recent behavior is queried against the model to authenticate them. The model is tested across its metrics to evaluate the reliability of BMS

    The Future of Cybercrime: AI and Emerging Technologies Are Creating a Cybercrime Tsunami

    Get PDF
    This paper reviews the impact of AI and emerging technologies on the future of cybercrime and the necessary strategies to combat it effectively. Society faces a pressing challenge as cybercrime proliferates through AI and emerging technologies. At the same time, law enforcement and regulators struggle to keep it up. Our primary challenge is raising awareness as cybercrime operates within a distinct criminal ecosystem. We explore the hijacking of emerging technologies by criminals (CrimeTech) and their use in illicit activities, along with the tools and processes (InfoSec) to protect against future cybercrime. We also explore the role of AI and emerging technologies (DeepTech) in supporting law enforcement, regulation, and legal services (LawTech)

    Effective Identity Management on Mobile Devices Using Multi-Sensor Measurements

    Get PDF
    Due to the dramatic increase in popularity of mobile devices in the past decade, sensitive user information is stored and accessed on these devices every day. Securing sensitive data stored and accessed from mobile devices, makes user-identity management a problem of paramount importance. The tension between security and usability renders the task of user-identity verification on mobile devices challenging. Meanwhile, an appropriate identity management approach is missing since most existing technologies for user-identity verification are either one-shot user verification or only work in restricted controlled environments. To solve the aforementioned problems, we investigated and sought approaches from the sensor data generated by human-mobile interactions. The data are collected from the on-board sensors, including voice data from microphone, acceleration data from accelerometer, angular acceleration data from gyroscope, magnetic force data from magnetometer, and multi-touch gesture input data from touchscreen. We studied the feasibility of extracting biometric and behaviour features from the on-board sensor data and how to efficiently employ the features extracted to perform user-identity verification on the smartphone device. Based on the experimental results of the single-sensor modalities, we further investigated how to integrate them with hardware such as fingerprint and Trust Zone to practically fulfill a usable identity management system for both local application and remote services control. User studies and on-device testing sessions were held for privacy and usability evaluation.Computer Science, Department o
    • …
    corecore