3,003 research outputs found

    Attentive Convolution: Equipping CNNs with RNN-style Attention Mechanisms

    Get PDF
    In NLP, convolutional neural networks (CNNs) have benefited less than recurrent neural networks (RNNs) from attention mechanisms. We hypothesize that this is because the attention in CNNs has been mainly implemented as attentive pooling (i.e., it is applied to pooling) rather than as attentive convolution (i.e., it is integrated into convolution). Convolution is the differentiator of CNNs in that it can powerfully model the higher-level representation of a word by taking into account its local fixed-size context in the input text t^x. In this work, we propose an attentive convolution network, ATTCONV. It extends the context scope of the convolution operation, deriving higher-level features for a word not only from local context, but also information extracted from nonlocal context by the attention mechanism commonly used in RNNs. This nonlocal context can come (i) from parts of the input text t^x that are distant or (ii) from extra (i.e., external) contexts t^y. Experiments on sentence modeling with zero-context (sentiment analysis), single-context (textual entailment) and multiple-context (claim verification) demonstrate the effectiveness of ATTCONV in sentence representation learning with the incorporation of context. In particular, attentive convolution outperforms attentive pooling and is a strong competitor to popular attentive RNNs.Comment: Camera-ready for TACL. 16 page

    Multi-turn Inference Matching Network for Natural Language Inference

    Full text link
    Natural Language Inference (NLI) is a fundamental and challenging task in Natural Language Processing (NLP). Most existing methods only apply one-pass inference process on a mixed matching feature, which is a concatenation of different matching features between a premise and a hypothesis. In this paper, we propose a new model called Multi-turn Inference Matching Network (MIMN) to perform multi-turn inference on different matching features. In each turn, the model focuses on one particular matching feature instead of the mixed matching feature. To enhance the interaction between different matching features, a memory component is employed to store the history inference information. The inference of each turn is performed on the current matching feature and the memory. We conduct experiments on three different NLI datasets. The experimental results show that our model outperforms or achieves the state-of-the-art performance on all the three datasets
    corecore