83 research outputs found

    SNU_IDS at SemEval-2018 Task 12: Sentence Encoder with Contextualized Vectors for Argument Reasoning Comprehension

    Full text link
    We present a novel neural architecture for the Argument Reasoning Comprehension task of SemEval 2018. It is a simple neural network consisting of three parts, collectively judging whether the logic built on a set of given sentences (a claim, reason, and warrant) is plausible or not. The model utilizes contextualized word vectors pre-trained on large machine translation (MT) datasets as a form of transfer learning, which can help to mitigate the lack of training data. Quantitative analysis shows that simply leveraging LSTMs trained on MT datasets outperforms several baselines and non-transferred models, achieving accuracies of about 70% on the development set and about 60% on the test set.Comment: SemEval 201

    Breaking NLI Systems with Sentences that Require Simple Lexical Inferences

    Full text link
    We create a new NLI test set that shows the deficiency of state-of-the-art models in inferences that require lexical and world knowledge. The new examples are simpler than the SNLI test set, containing sentences that differ by at most one word from sentences in the training set. Yet, the performance on the new test set is substantially worse across systems trained on SNLI, demonstrating that these systems are limited in their generalization ability, failing to capture many simple inferences.Comment: 6 pages, short paper at ACL 201

    Multi-turn Inference Matching Network for Natural Language Inference

    Full text link
    Natural Language Inference (NLI) is a fundamental and challenging task in Natural Language Processing (NLP). Most existing methods only apply one-pass inference process on a mixed matching feature, which is a concatenation of different matching features between a premise and a hypothesis. In this paper, we propose a new model called Multi-turn Inference Matching Network (MIMN) to perform multi-turn inference on different matching features. In each turn, the model focuses on one particular matching feature instead of the mixed matching feature. To enhance the interaction between different matching features, a memory component is employed to store the history inference information. The inference of each turn is performed on the current matching feature and the memory. We conduct experiments on three different NLI datasets. The experimental results show that our model outperforms or achieves the state-of-the-art performance on all the three datasets
    • …
    corecore