26 research outputs found

    MCRAGE: Synthetic Healthcare Data for Fairness

    Full text link
    In the field of healthcare, electronic health records (EHR) serve as crucial training data for developing machine learning models for diagnosis, treatment, and the management of healthcare resources. However, medical datasets are often imbalanced in terms of sensitive attributes such as race/ethnicity, gender, and age. Machine learning models trained on class-imbalanced EHR datasets perform significantly worse in deployment for individuals of the minority classes compared to samples from majority classes, which may lead to inequitable healthcare outcomes for minority groups. To address this challenge, we propose Minority Class Rebalancing through Augmentation by Generative modeling (MCRAGE), a novel approach to augment imbalanced datasets using samples generated by a deep generative model. The MCRAGE process involves training a Conditional Denoising Diffusion Probabilistic Model (CDDPM) capable of generating high-quality synthetic EHR samples from underrepresented classes. We use this synthetic data to augment the existing imbalanced dataset, thereby achieving a more balanced distribution across all classes, which can be used to train an unbiased machine learning model. We measure the performance of MCRAGE versus alternative approaches using Accuracy, F1 score and AUROC. We provide theoretical justification for our method in terms of recent convergence results for DDPMs with minimal assumptions.Comment: Keywords: synthetic electronic health records, conditional denoising diffusion probabilistic model, healthcare AI, tabular data, fairness, synthetic data. This paper is the result of work completed at the 2023 Emory University Department of Mathematics REU/RET program under the direction of Project Advisor Dr. Xi Yuanzhe. This work is sponsored by NSF DMS 205101

    Generating Medical Prescriptions with Conditional Transformer

    Full text link
    Access to real-world medication prescriptions is essential for medical research and healthcare quality improvement. However, access to real medication prescriptions is often limited due to the sensitive nature of the information expressed. Additionally, manually labelling these instructions for training and fine-tuning Natural Language Processing (NLP) models can be tedious and expensive. We introduce a novel task-specific model architecture, Label-To-Text-Transformer (\textbf{LT3}), tailored to generate synthetic medication prescriptions based on provided labels, such as a vocabulary list of medications and their attributes. LT3 is trained on a set of around 2K lines of medication prescriptions extracted from the MIMIC-III database, allowing the model to produce valuable synthetic medication prescriptions. We evaluate LT3's performance by contrasting it with a state-of-the-art Pre-trained Language Model (PLM), T5, analysing the quality and diversity of generated texts. We deploy the generated synthetic data to train the SpacyNER model for the Named Entity Recognition (NER) task over the n2c2-2018 dataset. The experiments show that the model trained on synthetic data can achieve a 96-98\% F1 score at Label Recognition on Drug, Frequency, Route, Strength, and Form. LT3 codes and data will be shared at \url{https://github.com/HECTA-UoM/Label-To-Text-Transformer}Comment: Accepted to: Workshop on Synthetic Data Generation with Generative AI (SyntheticData4ML Workshop) at NeurIPS 202

    Is artificial data useful for biomedical Natural Language Processing algorithms?

    Full text link
    A major obstacle to the development of Natural Language Processing (NLP) methods in the biomedical domain is data accessibility. This problem can be addressed by generating medical data artificially. Most previous studies have focused on the generation of short clinical text, and evaluation of the data utility has been limited. We propose a generic methodology to guide the generation of clinical text with key phrases. We use the artificial data as additional training data in two key biomedical NLP tasks: text classification and temporal relation extraction. We show that artificially generated training data used in conjunction with real training data can lead to performance boosts for data-greedy neural network algorithms. We also demonstrate the usefulness of the generated data for NLP setups where it fully replaces real training data.Comment: BioNLP 201

    A Biomedical Entity Extraction Pipeline for Oncology Health Records in Portuguese

    Full text link
    Textual health records of cancer patients are usually protracted and highly unstructured, making it very time-consuming for health professionals to get a complete overview of the patient's therapeutic course. As such limitations can lead to suboptimal and/or inefficient treatment procedures, healthcare providers would greatly benefit from a system that effectively summarizes the information of those records. With the advent of deep neural models, this objective has been partially attained for English clinical texts, however, the research community still lacks an effective solution for languages with limited resources. In this paper, we present the approach we developed to extract procedures, drugs, and diseases from oncology health records written in European Portuguese. This project was conducted in collaboration with the Portuguese Institute for Oncology which, besides holding over 1010 years of duly protected medical records, also provided oncologist expertise throughout the development of the project. Since there is no annotated corpus for biomedical entity extraction in Portuguese, we also present the strategy we followed in annotating the corpus for the development of the models. The final models, which combined a neural architecture with entity linking, achieved F1F_1 scores of 88.688.6, 95.095.0, and 55.855.8 per cent in the mention extraction of procedures, drugs, and diseases, respectively

    Autocompletion of Chief Complaints in the Electronic Health Records using Large Language Models

    Full text link
    The Chief Complaint (CC) is a crucial component of a patient's medical record as it describes the main reason or concern for seeking medical care. It provides critical information for healthcare providers to make informed decisions about patient care. However, documenting CCs can be time-consuming for healthcare providers, especially in busy emergency departments. To address this issue, an autocompletion tool that suggests accurate and well-formatted phrases or sentences for clinical notes can be a valuable resource for triage nurses. In this study, we utilized text generation techniques to develop machine learning models using CC data. In our proposed work, we train a Long Short-Term Memory (LSTM) model and fine-tune three different variants of Biomedical Generative Pretrained Transformers (BioGPT), namely microsoft/biogpt, microsoft/BioGPT-Large, and microsoft/BioGPT-Large-PubMedQA. Additionally, we tune a prompt by incorporating exemplar CC sentences, utilizing the OpenAI API of GPT-4. We evaluate the models' performance based on the perplexity score, modified BERTScore, and cosine similarity score. The results show that BioGPT-Large exhibits superior performance compared to the other models. It consistently achieves a remarkably low perplexity score of 1.65 when generating CC, whereas the baseline LSTM model achieves the best perplexity score of 170. Further, we evaluate and assess the proposed models' performance and the outcome of GPT-4.0. Our study demonstrates that utilizing LLMs such as BioGPT, leads to the development of an effective autocompletion tool for generating CC documentation in healthcare settings.Comment: IEEE BigData 2023 - Sorrento, Italy. 10 Pages, 4 Figures, 5 Table

    LOGEN: Few-shot Logical Knowledge-Conditioned Text Generation with Self-training

    Full text link
    Natural language generation from structured data mainly focuses on surface-level descriptions, suffering from uncontrollable content selection and low fidelity. Previous works leverage logical forms to facilitate logical knowledge-conditioned text generation. Though achieving remarkable progress, they are data-hungry, which makes the adoption for real-world applications challenging with limited data. To this end, this paper proposes a unified framework for logical knowledge-conditioned text generation in the few-shot setting. With only a few seeds logical forms (e.g., 20/100 shot), our approach leverages self-training and samples pseudo logical forms based on content and structure consistency. Experimental results demonstrate that our approach can obtain better few-shot performance than baselines.Comment: Work in progres
    corecore