11,394 research outputs found

    Natural Image Noise Dataset

    Full text link
    Convolutional neural networks have been the focus of research aiming to solve image denoising problems, but their performance remains unsatisfactory for most applications. These networks are trained with synthetic noise distributions that do not accurately reflect the noise captured by image sensors. Some datasets of clean-noisy image pairs have been introduced but they are usually meant for benchmarking or specific applications. We introduce the Natural Image Noise Dataset (NIND), a dataset of DSLR-like images with varying levels of ISO noise which is large enough to train models for blind denoising over a wide range of noise. We demonstrate a denoising model trained with the NIND and show that it significantly outperforms BM3D on ISO noise from unseen images, even when generalizing to images from a different type of camera. The Natural Image Noise Dataset is published on Wikimedia Commons such that it remains open for curation and contributions. We expect that this dataset will prove useful for future image denoising applications.Comment: NTIRE at CVPR 201

    Image Restoration Using Very Deep Convolutional Encoder-Decoder Networks with Symmetric Skip Connections

    Full text link
    In this paper, we propose a very deep fully convolutional encoding-decoding framework for image restoration such as denoising and super-resolution. The network is composed of multiple layers of convolution and de-convolution operators, learning end-to-end mappings from corrupted images to the original ones. The convolutional layers act as the feature extractor, which capture the abstraction of image contents while eliminating noises/corruptions. De-convolutional layers are then used to recover the image details. We propose to symmetrically link convolutional and de-convolutional layers with skip-layer connections, with which the training converges much faster and attains a higher-quality local optimum. First, The skip connections allow the signal to be back-propagated to bottom layers directly, and thus tackles the problem of gradient vanishing, making training deep networks easier and achieving restoration performance gains consequently. Second, these skip connections pass image details from convolutional layers to de-convolutional layers, which is beneficial in recovering the original image. Significantly, with the large capacity, we can handle different levels of noises using a single model. Experimental results show that our network achieves better performance than all previously reported state-of-the-art methods.Comment: Accepted to Proc. Advances in Neural Information Processing Systems (NIPS'16). Content of the final version may be slightly different. Extended version is available at http://arxiv.org/abs/1606.0892

    Dilated Deep Residual Network for Image Denoising

    Full text link
    Variations of deep neural networks such as convolutional neural network (CNN) have been successfully applied to image denoising. The goal is to automatically learn a mapping from a noisy image to a clean image given training data consisting of pairs of noisy and clean images. Most existing CNN models for image denoising have many layers. In such cases, the models involve a large amount of parameters and are computationally expensive to train. In this paper, we develop a dilated residual CNN for Gaussian image denoising. Compared with the recently proposed residual denoiser, our method can achieve comparable performance with less computational cost. Specifically, we enlarge receptive field by adopting dilated convolution in residual network, and the dilation factor is set to a certain value. We utilize appropriate zero padding to make the dimension of the output the same as the input. It has been proven that the expansion of receptive field can boost the CNN performance in image classification, and we further demonstrate that it can also lead to competitive performance for denoising problem. Moreover, we present a formula to calculate receptive field size when dilated convolution is incorporated. Thus, the change of receptive field can be interpreted mathematically. To validate the efficacy of our approach, we conduct extensive experiments for both gray and color image denoising with specific or randomized noise levels. Both of the quantitative measurements and the visual results of denoising are promising comparing with state-of-the-art baselines.Comment: camera ready, 8 pages, accepted to IEEE ICTAI 201

    Image Denoising with Graph-Convolutional Neural Networks

    Get PDF
    Recovering an image from a noisy observation is a key problem in signal processing. Recently, it has been shown that data-driven approaches employing convolutional neural networks can outperform classical model-based techniques, because they can capture more powerful and discriminative features. However, since these methods are based on convolutional operations, they are only capable of exploiting local similarities without taking into account non-local self-similarities. In this paper we propose a convolutional neural network that employs graph-convolutional layers in order to exploit both local and non-local similarities. The graph-convolutional layers dynamically construct neighborhoods in the feature space to detect latent correlations in the feature maps produced by the hidden layers. The experimental results show that the proposed architecture outperforms classical convolutional neural networks for the denoising task.Comment: IEEE International Conference on Image Processing (ICIP) 201
    • …
    corecore