69 research outputs found

    Nash equilibrium and bisimulation invariance

    Get PDF
    Game theory provides a well-established framework for the analysis of concurrent and multi-agent systems. The basic idea is that concurrent processes (agents) can be understood as corresponding to players in a game; plays represent the possible computation runs of the system; and strategies define the behaviour of agents. Typically, strategies are modelled as functions from sequences of system states to player actions. Analysing a system in such a setting involves computing the set of (Nash) equilibria in the concurrent game. However, we show that, with respect to the above model of strategies (arguably, the "standard" model in the computer science literature), bisimilarity does not preserve the existence of Nash equilibria. Thus, two concurrent games which are behaviourally equivalent from a semantic perspective, and which from a logical perspective satisfy the same temporal logic formulae, may nevertheless have fundamentally different properties (solutions) from a game theoretic perspective. Our aim in this paper is to explore the issues raised by this discovery. After illustrating the issue by way of a motivating example, we present three models of strategies with respect to which the existence of Nash equilibria is preserved under bisimilarity. We use some of these models of strategies to provide new semantic foundations for logics for strategic reasoning, and investigate restricted scenarios where bisimilarity can be shown to preserve the existence of Nash equilibria with respect to the conventional model of strategies in the computer science literature

    Automated Temporal Equilibrium Analysis: Verification and Synthesis of Multi-Player Games

    Full text link
    In the context of multi-agent systems, the rational verification problem is concerned with checking which temporal logic properties will hold in a system when its constituent agents are assumed to behave rationally and strategically in pursuit of individual objectives. Typically, those objectives are expressed as temporal logic formulae which the relevant agent desires to see satisfied. Unfortunately, rational verification is computationally complex, and requires specialised techniques in order to obtain practically useable implementations. In this paper, we present such a technique. This technique relies on a reduction of the rational verification problem to the solution of a collection of parity games. Our approach has been implemented in the Equilibrium Verification Environment (EVE) system. The EVE system takes as input a model of a concurrent/multi-agent system represented using the Simple Reactive Modules Language (SRML), where agent goals are represented as Linear Temporal Logic (LTL) formulae, together with a claim about the equilibrium behaviour of the system, also expressed as an LTL formula. EVE can then check whether the LTL claim holds on some (or every) computation of the system that could arise through agents choosing Nash equilibrium strategies; it can also check whether a system has a Nash equilibrium, and synthesise individual strategies for players in the multi-player game. After presenting our basic framework, we describe our new technique and prove its correctness. We then describe our implementation in the EVE system, and present experimental results which show that EVE performs favourably in comparison to other existing tools that support rational verification

    A New Game Equivalence and its Modal Logic

    Get PDF
    We revisit the crucial issue of natural game equivalences, and semantics of game logics based on these. We present reasons for investigating finer concepts of game equivalence than equality of standard powers, though staying short of modal bisimulation. Concretely, we propose a more finegrained notion of equality of "basic powers" which record what players can force plus what they leave to others to do, a crucial feature of interaction. This notion is closer to game-theoretic strategic form, as we explain in detail, while remaining amenable to logical analysis. We determine the properties of basic powers via a new representation theorem, find a matching "instantial neighborhood game logic", and show how our analysis can be extended to a new game algebra and dynamic game logic.Comment: In Proceedings TARK 2017, arXiv:1707.0825

    Question-answer games

    Get PDF

    Logics for Dynamics of Information and Preferences: Seminar’s yearbook 2008

    Get PDF
    corecore