5,378 research outputs found

    A dynamic game of R and D: Patent protection and competitive behavior

    Get PDF
    A theory of dynamic optimal resource allocation to R and D in an n-firm industry is developed using differential games. This technique represents a synthesis of the analytic methods previously applied to the problem: static game theory and optimal control. The use of particular functional forms allows the computation and detailed discussion of the Nash equilibrium in investment rules

    Equilibrium Computation in Resource Allocation Games

    Full text link
    We study the equilibrium computation problem for two classical resource allocation games: atomic splittable congestion games and multimarket Cournot oligopolies. For atomic splittable congestion games with singleton strategies and player-specific affine cost functions, we devise the first polynomial time algorithm computing a pure Nash equilibrium. Our algorithm is combinatorial and computes the exact equilibrium assuming rational input. The idea is to compute an equilibrium for an associated integrally-splittable singleton congestion game in which the players can only split their demands in integral multiples of a common packet size. While integral games have been considered in the literature before, no polynomial time algorithm computing an equilibrium was known. Also for this class, we devise the first polynomial time algorithm and use it as a building block for our main algorithm. We then develop a polynomial time computable transformation mapping a multimarket Cournot competition game with firm-specific affine price functions and quadratic costs to an associated atomic splittable congestion game as described above. The transformation preserves equilibria in either games and, thus, leads -- via our first algorithm -- to a polynomial time algorithm computing Cournot equilibria. Finally, our analysis for integrally-splittable games implies new bounds on the difference between real and integral Cournot equilibria. The bounds can be seen as a generalization of the recent bounds for single market oligopolies obtained by Todd [2016].Comment: This version contains some typo corrections onl

    A dynamic game of R and D: Patent protection and competitive behavior

    Get PDF
    A theory of dynamic optimal resource allocation to R and D in an n-firm industry is developed using differential games. This technique represents a synthesis of the analytic methods previously applied to the problem: static game theory and optimal control. The use of particular functional forms allows the computation and detailed discussion of the Nash equilibrium in investment rules

    The Parallel Complexity of Coloring Games

    Get PDF
    International audienceWe wish to motivate the problem of finding decentralized lower-bounds on the complexity of computing a Nash equilibrium in graph games. While the centralized computation of an equilibrium in polynomial time is generally perceived as a positive result, this does not reflect well the reality of some applications where the game serves to implement distributed resource allocation algorithms, or to model the social choices of users with limited memory and computing power. As a case study, we investigate on the parallel complexity of a game-theoretic variation of graph coloring. These " coloring games " were shown to capture key properties of the more general welfare games and Hedonic games. On the positive side, it can be computed a Nash equilibrium in polynomial-time for any such game with a local search algorithm. However, the algorithm is time-consuming and it requires polynomial space. The latter questions the use of coloring games in the modeling of information-propagation in social networks. We prove that the problem of computing a Nash equilibrium in a given coloring game is PTIME-hard, and so, it is unlikely that one can be computed with an efficient distributed algorithm. The latter brings more insights on the complexity of these games

    Non-centralized Control for Flow-based Distribution Networks: A Game-theoretical Insight

    Get PDF
    This paper solves a data-driven control problem for a flow-based distribution network with two objectives: a resource allocation and a fair distribution of costs. These objectives represent both cooperation and competition directions. It is proposed a solution that combines either a centralized or distributed cooperative game approach using the Shapley value to determine a proper partitioning of the system and a fair communication cost distribution. On the other hand, a decentralized noncooperative game approach computing the Nash equilibrium is used to achieve the control objective of the resource allocation under a non-complete information topology. Furthermore, an invariant-set property is presented and the closed-loop system stability is analyzed for the non cooperative game approach. Another contribution regarding the cooperative game approach is an alternative way to compute the Shapley value for the proposed specific characteristic function. Unlike the classical cooperative-games approach, which has a limited application due to the combinatorial explosion issues, the alternative method allows calculating the Shapley value in polynomial time and hence can be applied to large-scale problems.Generalitat de Catalunya FI 2014Ministerio de Ciencia y EducaciĂłn DPI2016-76493-C3-3-RMinisterio de Ciencia y EducaciĂłn DPI2008-05818Proyecto europeo FP7-ICT DYMASO

    On Existence and Properties of Approximate Pure Nash Equilibria in Bandwidth Allocation Games

    Full text link
    In \emph{bandwidth allocation games} (BAGs), the strategy of a player consists of various demands on different resources. The player's utility is at most the sum of these demands, provided they are fully satisfied. Every resource has a limited capacity and if it is exceeded by the total demand, it has to be split between the players. Since these games generally do not have pure Nash equilibria, we consider approximate pure Nash equilibria, in which no player can improve her utility by more than some fixed factor α\alpha through unilateral strategy changes. There is a threshold αδ\alpha_\delta (where δ\delta is a parameter that limits the demand of each player on a specific resource) such that α\alpha-approximate pure Nash equilibria always exist for α≥αδ\alpha \geq \alpha_\delta, but not for α<αδ\alpha < \alpha_\delta. We give both upper and lower bounds on this threshold αδ\alpha_\delta and show that the corresponding decision problem is NP{\sf NP}-hard. We also show that the α\alpha-approximate price of anarchy for BAGs is α+1\alpha+1. For a restricted version of the game, where demands of players only differ slightly from each other (e.g. symmetric games), we show that approximate Nash equilibria can be reached (and thus also be computed) in polynomial time using the best-response dynamic. Finally, we show that a broader class of utility-maximization games (which includes BAGs) converges quickly towards states whose social welfare is close to the optimum
    • …
    corecore