1,320 research outputs found

    Narrowband Interference Suppression in Wireless OFDM Systems

    Full text link
    Signal distortions in communication systems occur between the transmitter and the receiver; these distortions normally cause bit errors at the receiver. In addition interference by other signals may add to the deterioration in performance of the communication link. In order to achieve reliable communication, the effects of the communication channel distortion and interfering signals must be reduced using different techniques. The aim of this paper is to introduce the fundamentals of Orthogonal Frequency Division Multiplexing (OFDM) and Orthogonal Frequency Division Multiple Access (OFDMA), to review and examine the effects of interference in a digital data communication link and to explore methods for mitigating or compensating for these effects

    Multi-band OFDM UWB receiver with narrowband interference suppression

    Get PDF
    A multi band orthogonal frequency division multiplexing (MB-OFDM) compatible ultra wideband (UWB) receiver with narrowband interference (NBI) suppression capability is presented. The average transmit power of UWB system is limited to -41.3 dBm/MHz in order to not interfere existing narrowband systems. Moreover, it must operate even in the presence of unintentional radiation of FCC Class-B compatible devices. If this unintentional radiation resides in the UWB band, it can jam the communication. Since removing the interference in digital domain requires higher dynamic range of analog front-end than removing it in analog domain, a programmable analog notch filter is used to relax the receiver requirements in the presence of NBI. The baseband filter is placed before the variable gain amplifier (VGA) in order to reduce the signal swing at the VGA input. The frequency hopping period of MB-OFDM puts a lower limit on the settling time of the filter, which is inverse proportional to notch bandwidth. However, notch bandwidth should be low enough not to attenuate the adjacent OFDM tones. Since these requirements are contradictory, optimization is needed to maximize overall performance. Two different NBI suppression schemes are tested. In the first scheme, the notch filter is operating for all sub-bands. In the second scheme, the notch filter is turned on during the sub-band affected by NBI. Simulation results indicate that the UWB system with the first and the second suppression schemes can handle up to 6 dB and 14 dB more NBI power, respectively. The results of this work are not limited to MB-OFDM UWB system, and can be applied to other frequency hopping systems

    A low-cost time-hopping impulse radio system for high data rate transmission

    Full text link
    We present an efficient, low-cost implementation of time-hopping impulse radio that fulfills the spectral mask mandated by the FCC and is suitable for high-data-rate, short-range communications. Key features are: (i) all-baseband implementation that obviates the need for passband components, (ii) symbol-rate (not chip rate) sampling, A/D conversion, and digital signal processing, (iii) fast acquisition due to novel search algorithms, (iv) spectral shaping that can be adapted to accommodate different spectrum regulations and interference environments. Computer simulations show that this system can provide 110Mbit/s at 7-10m distance, as well as higher data rates at shorter distances under FCC emissions limits. Due to the spreading concept of time-hopping impulse radio, the system can sustain multiple simultaneous users, and can suppress narrowband interference effectively.Comment: To appear in EURASIP Journal on Applied Signal Processing (Special Issue on UWB - State of the Art

    Simultaneous Transmission and Reception: Algorithm, Design and System Level Performance

    Full text link
    Full Duplex or Simultaneous transmission and reception (STR) in the same frequency at the same time can potentially double the physical layer capacity. However, high power transmit signal will appear at receive chain as echoes with powers much higher than the desired received signal. Therefore, in order to achieve the potential gain, it is imperative to cancel these echoes. As these high power echoes can saturate low noise amplifier (LNA) and also digital domain echo cancellation requires unrealistically high resolution analog-to-digital converter (ADC), the echoes should be cancelled or suppressed sufficiently before LNA. In this paper we present a closed-loop echo cancellation technique which can be implemented purely in analogue domain. The advantages of our method are multiple-fold: it is robust to phase noise, does not require additional set of antennas, can be applied to wideband signals and the performance is irrelevant to radio frequency (RF) impairments in transmit chain. Next, we study a few protocols for STR systems in carrier sense multiple access (CSMA) network and investigate MAC level throughput with realistic assumptions in both single cell and multiple cells. We show that STR can reduce hidden node problem in CSMA network and produce gains of up to 279% in maximum throughput in such networks. Finally, we investigate the application of STR in cellular systems and study two new unique interferences introduced to the system due to STR, namely BS-BS interference and UE-UE interference. We show that these two new interferences will hugely degrade system performance if not treated appropriately. We propose novel methods to reduce both interferences and investigate the performances in system level.Comment: 20 pages. This manuscript will appear in the IEEE Transactions on Wireless Communication
    • …
    corecore