29,849 research outputs found

    Cavity-enhanced Raman Microscopy of Individual Carbon Nanotubes

    Get PDF
    Raman spectroscopy reveals chemically specific information and provides label-free insight into the molecular world. However, the signals are intrinsically weak and call for enhancement techniques. Here, we demonstrate Purcell enhancement of Raman scattering in a tunable high-finesse microcavity, and utilize it for molecular diagnostics by combined Raman and absorption imaging. Studying individual single-wall carbon nanotubes, we identify crucial structural parameters such as nanotube radius, electronic structure and extinction cross-section. We observe a 320-times enhanced Raman scattering spectral density and an effective Purcell factor of 6.2, together with a collection efficiency of 60%. Potential for significantly higher enhancement, quantitative signals, inherent spectral filtering and absence of intrinsic background in cavity-vacuum stimulated Raman scattering render the technique a promising tool for molecular imaging. Furthermore, cavity-enhanced Raman transitions involving localized excitons could potentially be used for gaining quantum control over nanomechanical motion and open a route for molecular cavity optomechanics

    Stokes imaging polarimetry using image restoration at the Swedish 1-m Solar Telescope

    Full text link
    Aims: We aim to achieve high spatial resolution as well as high polarimetric sensitivity, using an earth-based 1m-class solar telescope, for the study of magnetic fine structure on the Sun. Methods: We use a setup with 3 high-speed, low-noise cameras to construct datasets with interleaved polarimetric states, particularly suitable for Multi-Object Multi-Frame Blind Deconvolution image restorations. We discuss the polarimetric calibration routine as well as various potential sources of error in the results. Results: We obtained near diffraction limited images, with a noise level of approximately 10^(-3) I(cont). We confirm that dark-cores have a weaker magnetic field and at a lower inclination angle with respect to the solar surface than the edges of the penumbral filament. We show that the magnetic field strength in faculae-striations is significantly lower than in other nearby parts of the faculae.Comment: Accepted for publication in Astronomy & Astrophysics, 12 pages, 11 figure

    Transient and steady-state shear banding in a lamellar phase as studied by Rheo-NMR

    Get PDF
    Flow fields and shear-induced structures in the lamellar (L-alpha) phase of the system triethylene glycol mono n-decyl ether (C10E3)/water were investigated by NMR velocimetry, diffusometry, and H-2 NMR spectroscopy. The transformation from multilamellar vesicles (MLVs) to aligned planar lamellae is accompanied by a transient gradient shear banding. A high-shear-rate band of aligned lamellae forms next to the moving inner wall of the cylindrical Couette shear cell while a low-shear-rate band of the initial MLV structure remains close to the outer stationary wall. The band of layers grows at the expense of the band of MLVs until the transformation is completed. This process scales with the applied strain. Wall slip is a characteristic of the MLV state, while aligned layers show no deviation from Newtonian flow. The homogeneous nature of the opposite transformation from well aligned layers to MLVs via an intermediate structure resembling undulated multilamellar cylinders is confirmed. The strain dependence of this transformation appears to be independent of temperature. The shear diagram, which represents the shear-induced structures as a function of temperature and shear rate, contains a transition region between stable layers and stable MLVs. The steady-state structures in the transition region show a continuous change from layer-like at high temperature to MLV-like at lower temperature. These structures are homogeneous on a length scale above a few micrometers

    Resolving HD 100546 disc in the mid-infrared: Small inner disc and asymmetry near the gap

    Get PDF
    A region of roughly half of the solar system scale around the star HD 100546 is largely cleared of gas and dust, in contrast to the bright outer disc. However, some material is observed in the immediate vicinity of the star. We investigate how the dust is distributed within and outside the gap, and constrain the disc geometry with mid-infrared interferometric observations using VLTI/MIDI. With baseline lengths of 40m, our long baseline observations are sensitive to the inner few AU from the star, and we combined them with observations at shorter, 15m baselines, to probe emission beyond the gap at up to 20AU from the star. We modelled the mid-infrared emission using radial temperature profiles. Our model is composed of infinitesimal concentric annuli emitting as black bodies, and it has distinct inner and outer disc components. We derived an upper limit of 0.7AU for the radial size of the inner disc, from our longest baseline data. This small dusty disc is separated from the edge of the outer disc by a large, roughly 10AU wide gap. Our short baseline data place a bright ring of emission at 11+-1AU, consistent with prior observations of the transition region between the gap and the outer disc, known as the disc wall. The inclination and position angle are constrained by our data to i=53+-8deg and PA=145+-5deg. Compared to the rim and outer disc geometry this suggests co-planarity. Brightness asymmetry is evident in both short and long baseline data, and it is unequivocally discernible from any atmospheric or instrumental effects. The origin of the asymmetry is consistent with the bright disc wall, which we find to be 1-2AU wide. The gap is cleared of micron-sized dust, but we cannot rule out the presence of larger particles and/or perturbing bodies.Comment: 12 pages, 9 figures, accepted for publication in A&

    The Expanded Very Large Array

    Full text link
    In almost 30 years of operation, the Very Large Array (VLA) has proved to be a remarkably flexible and productive radio telescope. However, the basic capabilities of the VLA have changed little since it was designed. A major expansion utilizing modern technology is currently underway to improve the capabilities of the VLA by at least an order of magnitude in both sensitivity and in frequency coverage. The primary elements of the Expanded Very Large Array (EVLA) project include new or upgraded receivers for continuous frequency coverage from 1 to 50 GHz, new local oscillator, intermediate frequency, and wide bandwidth data transmission systems to carry signals with 16 GHz total bandwidth from each antenna, and a new digital correlator with the capability to process this bandwidth with an unprecedented number of frequency channels for an imaging array. Also included are a new monitor and control system and new software that will provide telescope ease of use. Scheduled for completion in 2012, the EVLA will provide the world research community with a flexible, powerful, general-purpose telescope to address current and future astronomical issues.Comment: Added journal reference: published in Proceedings of the IEEE, Special Issue on Advances in Radio Astronomy, August 2009, vol. 97, No. 8, 1448-1462 Six figures, one tabl
    • …
    corecore