1,221 research outputs found
Excitons in hexagonal nanonetwork materials
Optical excitations in hexagonal nanonetwork materials, for example,
Boron-Nitride (BN) sheets and nanotubes, are investigated theoretically. A
permanent electric dipole moment, whose direction is from the B site to the N
site, is considered along the BN bond. When the exciton hopping integral is
restricted to the nearest neighbors, the flat band of the exciton appears at
the lowest energy. The symmetry of this exciton band is optically forbidden,
indicating that the excitons relaxed to this band will show quite long lifetime
which will cause luminescence properties
Optical excitations in hexagonal nanonetwork materials
Optical excitations in hexagonal nanonetwork materials, for example,
Boron-Nitride (BN) sheets and nanotubes, are investigated theoretically. The
bonding of BN systems is positively polarized at the B site, and is negatively
polarized at the N site. There is a permanent electric dipole moment along the
BN bond, whose direction is from the B site to the N site. When the exciton
hopping integral is restricted to the nearest neighbors, the flat band of the
exciton appears at the lowest energy. The higher optical excitations have
excitation bands similar to the electronic bands of graphene planes and carbon
nanotubes. The symmetry of the flat exciton band is optically forbidden,
indicating that the excitons related to this band will show quite long lifetime
which will cause strong luminescence properties.Comment: 4 pages; 3 figures; proceedings of "XVIth International Winterschool
on Electronic Properties of Novel Materials (IWEPNM2002)
Defect reduction in GaN epilayers grown by metal-organic chemical vapor deposition with in situ SiNx nanonetwork
Line and point defect reductions in thin GaN epilayers with single and double in situ SiNxnanonetworks on sapphire substrates grown by metal-organic chemical vapor deposition were studied by deep-level transient spectroscopy(DLTS), augmented by x-ray diffraction(XRD), and low temperature photoluminescence(PL). All samples measured by DLTS in the temperature range from 80to400K exhibited trap A (peak at ∼325K) with an activation energy of 0.55–0.58eV, and trap B (peak at ∼155K) with an activation energy of 0.21–0.28eV. The concentrations of both traps were much lower for layers with SiNx nanonetwork compared to the reference sample. The lowest concentration was achieved for the sample with 6mindeposition SiNx nanonetwork, which was also lower than that for a sample prepared by conventional epitaxial lateral overgrowth. In concert with the DLTS results, PL and XRD linewidths were reduced for the samples with SiNx network indicating improved material quality. Consistent trend among optical, structural, and DLTS results suggests that SiNxnetwork can effectively reduce both point and line defects
- …
