13,920 research outputs found

    Electrocatalytic Hydrogen Evolution Reaction on Edges of a Few Layer Molybdenum Disulfide Nanodots

    Full text link
    The design and development of inexpensive highly efficient electrocatalysts for hydrogen production, underpins several emerging clean-energy technologies. In this work, for the first time, molybdenum disulfide (MoS2) nanodots have been synthesized by ionic liquid assisted grinding exfoliation of bulk platelets and isolated by sequential centrifugation. The nanodots have a thickness of up to 7 layers (4 nm) and an average lateral size smaller than 20 nm. Detailed structural characterization established that the nanodots retained the crystalline quality and low oxidation states of the bulk material. The small lateral size and reduced number of layers provided these nanodots with an easier path for the electron transport and plentiful active sites for the catalysis of hydrogen evolution reaction (HER) in acidic electrolyte. The MoS2 nanodots exhibited good durability and a Tafel slope of 61 mVdec-1 with an estimated onset potential of -0.09 V vs RHE, which are considered among the best values achieved for 2H phase. It is envisaged that this work may provide a simplistic route to synthesize a wide range of 2D layered nanodots that have applications in water splitting and other energy related technologies. KEYWORDS: MoS2 nanosheets, hydrogen evolution reaction, electrocatalysis, edges, nanodots, ionic liquid exfoliation, water splittingComment: Corresponding author: [email protected]. in ACS Applied Materials and Interfaces, 201

    Deconvoluting Reversal Modes in Exchange Biased Nanodots

    Get PDF
    Ensemble-averaged exchange bias in arrays of Fe/FeF2 nanodots has been deconvoluted into local, microscopic, bias separately experienced by nanodots going through different reversal modes. The relative fraction of dots in each mode can be modified by exchange bias. Single domain dots exhibit a simple loop shift, while vortex state dots have asymmetric shifts in the vortex nucleation and annihilation fields, manifesting local incomplete domain walls in these nanodots as magnetic vortices with tilted cores.Comment: 17 pages, 3 figures. Phys. Rev. B in pres

    Controllable selective exfoliation of high-quality graphene nanosheets and nanodots by ionic liquid assisted grinding

    Full text link
    Bulk quantities of graphene nanosheets and nanodots have been selectively fabricated by mechanical grinding exfoliation of natural graphite in a small quantity of ionic liquids. The resulting graphene sheets and dots are solvent free with low levels of naturally absorbed oxygen, inherited from the starting graphite. The sheets are only two to five layers thick. The graphene nanodots have diameters in the range of 9-29 nm and heights in the range of 1-16 nm, which can be controlled by changing the processing time.Comment: * Corresponding authors: [email protected]; [email protected]

    A combined FEG-SEM and TEM study of silicon nanodot assembly

    Get PDF
    Nanodots forming dense assembly on a substrate are difficult to characterize in terms of size, density, morphology and cristallinity. The present study shows how valuable information can be obtained by a combination of electron microscopy techniques. A silicon nanodots deposit has been studied by Scanning Electron Microscopy (SEM) and Transmission Electron Microscopy (TEM) to estimate essentially the dot size and density, quantities emphasized because of their high interest for application. High resolution SEM indicates a density of 1.6 × 1012 dots/cm2 for a 5 nm to 10 nm dot size. TEM imaging using a phase retrieval treatment of a focus series gives a higher dot density (2 × 1012 dots/cm2) for a 5 nm dot size. High Resolution Transmission Electron Microscopy (HRTEM) indicates that the dots are crystalline which is confirmed by electron diffraction. According to HRTEM and electron diffraction, the dot size is about 3 nm which is significantly smaller than the SEM and TEM results. These differences are not contradictory but attributed to the fact that each technique is probing a different phenomenon. A core-shell structure for the dot is proposed which reconcile all the results. All along the study, Fourier transforms have been widely used under many aspects

    High density array of epitaxial BiFeO3 nanodots with robust and reversibly switchable topological domain states

    Full text link
    The exotic topological domains in ferroelectrics and multiferroics have attracted extensive interest in recent years due to their novel functionalities and potential applications in nanoelectronic devices. One of the key challenges for such applications is a realization of robust yet reversibly switchable nanoscale topological domain states with high density, wherein spontaneous topological structures can be individually addressed and controlled. This has been accomplished in our work using high density arrays of epitaxial BiFeO3 (BFO) nanodots with lateral size as small as ~60 nm. We demonstrate various types of spontaneous topological domain structures, including center-convergent domains, center-divergent domains, and double-center domains, which are stable over sufficiently long time yet can be manipulated and reversibly switched by electric field. The formation mechanisms of these topological domain states, assisted by the accumulation of compensating charges on the surface, have also been revealed. These result demonstrated that these reversibly switchable topological domain arrays are promising for applications in high density nanoferroelectric devices such as nonvolatile memoriesComment: 5 figures, 18 pages, plus supplementary material

    Chemical Vapor Deposition of silicon nanodots on TiO2 submicronic powders in vibrated fluidized bed

    Get PDF
    Silicon nanodots have been deposited on TiO2 submicronic powders in a vibrated Fluidized Bed Chemical Vapor Deposition (FBCVD) reactor from silane SiH4. Deposition conditions involving very low deposition rates have been studied. After treatment, powders are under the form of micronic agglomerates. In the operating range tested, this agglomerates formation mainly depends on the fluidization conditions and not on the CVD parameters. The best results have been obtained for anatase TiO2 powders for which the conditions of fluidization have been the most optimized. For these anatase powders, agglomerates are porous. SEM and TEM imaging prove that silicon nanodots (8-10 nm in size) have been deposited on the surface of particles and that this deposition is uniform on the whole powders and conformal around each grain, even if not fully continuous. Raman spectroscopy shows that the TiO2 powders have been partially reduced into TiO2-x during deposition. The TiO2 stoichiometry can be recovered by annealing under air, and IR spectroscopy indicates that the deposited silicon nanodots have been at least partly oxidized into SiO2 after this annealing
    corecore