1,476 research outputs found

    Exploring cooperative game mechanisms of scientific coauthorship networks

    Full text link
    Scientific coauthorship, generated by collaborations and competitions among researchers, reflects effective organizations of human resources. Researchers, their expected benefits through collaborations, and their cooperative costs constitute the elements of a game. Hence we propose a cooperative game model to explore the evolution mechanisms of scientific coauthorship networks. The model generates geometric hypergraphs, where the costs are modelled by space distances, and the benefits are expressed by node reputations, i. e. geometric zones that depend on node position in space and time. Modelled cooperative strategies conditioned on positive benefit-minus-cost reflect the spatial reciprocity principle in collaborations, and generate high clustering and degree assortativity, two typical features of coauthorship networks. Modelled reputations generate the generalized Poisson parts and fat tails appeared in specific distributions of empirical data, e. g. paper team size distribution. The combined effect of modelled costs and reputations reproduces the transitions emerged in degree distribution, in the correlation between degree and local clustering coefficient, etc. The model provides an example of how individual strategies induce network complexity, as well as an application of game theory to social affiliation networks

    Feature analysis of multidisciplinary scientific collaboration patterns based on PNAS

    Full text link
    The features of collaboration patterns are often considered to be different from discipline to discipline. Meanwhile, collaborating among disciplines is an obvious feature emerged in modern scientific research, which incubates several interdisciplines. The features of collaborations in and among the disciplines of biological, physical and social sciences are analyzed based on 52,803 papers published in a multidisciplinary journal PNAS during 1999 to 2013. From those data, we found similar transitivity and assortativity of collaboration patterns as well as the identical distribution type of collaborators per author and that of papers per author, namely a mixture of generalized Poisson and power-law distributions. In addition, we found that interdisciplinary research is undertaken by a considerable fraction of authors, not just those with many collaborators or those with many papers. This case study provides a window for understanding aspects of multidisciplinary and interdisciplinary collaboration patterns

    A New Approach to Analyzing Patterns of Collaboration in Co-authorship Networks - Mesoscopic Analysis and Interpretation

    Full text link
    This paper focuses on methods to study patterns of collaboration in co-authorship networks at the mesoscopic level. We combine qualitative methods (participant interviews) with quantitative methods (network analysis) and demonstrate the application and value of our approach in a case study comparing three research fields in chemistry. A mesoscopic level of analysis means that in addition to the basic analytic unit of the individual researcher as node in a co-author network, we base our analysis on the observed modular structure of co-author networks. We interpret the clustering of authors into groups as bibliometric footprints of the basic collective units of knowledge production in a research specialty. We find two types of coauthor-linking patterns between author clusters that we interpret as representing two different forms of cooperative behavior, transfer-type connections due to career migrations or one-off services rendered, and stronger, dedicated inter-group collaboration. Hence the generic coauthor network of a research specialty can be understood as the overlay of two distinct types of cooperative networks between groups of authors publishing in a research specialty. We show how our analytic approach exposes field specific differences in the social organization of research.Comment: An earlier version of the paper was presented at ISSI 2009, 14-17 July, Rio de Janeiro, Brazil. Revised version accepted on 2 April 2010 for publication in Scientometrics. Removed part on node-role connectivity profile analysis after finding error in calculation and deciding to postpone analysis

    Data sets for author name disambiguation: an empirical analysis and a new resource

    Get PDF
    Data sets of publication meta data with manually disambiguated author names play an important role in current author name disambiguation (AND) research. We review the most important data sets used so far, and compare their respective advantages and shortcomings. From the results of this review, we derive a set of general requirements to future AND data sets. These include both trivial requirements, like absence of errors and preservation of author order, and more substantial ones, like full disambiguation and adequate representation of publications with a small number of authors and highly variable author names. On the basis of these requirements, we create and make publicly available a new AND data set, SCAD-zbMATH. Both the quantitative analysis of this data set and the results of our initial AND experiments with a naive baseline algorithm show the SCAD-zbMATH data set to be considerably different from existing ones. We consider it a useful new resource that will challenge the state of the art in AND and benefit the AND research community

    The Effect of Gender in the Publication Patterns in Mathematics

    Get PDF
    Despite the increasing number of women graduating in mathematics, a systemic gender imbalance persists and is signified by a pronounced gender gap in the distribution of active researchers and professors. Especially at the level of university faculty, women mathematicians continue being drastically underrepresented, decades after the first affirmative action measures have been put into place. A solid publication record is of paramount importance for securing permanent positions. Thus, the question arises whether the publication patterns of men and women mathematicians differ in a significant way. Making use of the zbMATH database, one of the most comprehensive metadata sources on mathematical publications, we analyze the scholarly output of ~150,000 mathematicians from the past four decades whose gender we algorithmically inferred. We focus on development over time, collaboration through coautorships, presumed journal quality and distribution of research topics -- factors known to have a strong impact on job perspectives. We report significant differences between genders which may put women at a disadvantage when pursuing an academic career in mathematics.Comment: 24 pages, 12 figure

    Knowledge-based Biomedical Data Science 2019

    Full text link
    Knowledge-based biomedical data science (KBDS) involves the design and implementation of computer systems that act as if they knew about biomedicine. Such systems depend on formally represented knowledge in computer systems, often in the form of knowledge graphs. Here we survey the progress in the last year in systems that use formally represented knowledge to address data science problems in both clinical and biological domains, as well as on approaches for creating knowledge graphs. Major themes include the relationships between knowledge graphs and machine learning, the use of natural language processing, and the expansion of knowledge-based approaches to novel domains, such as Chinese Traditional Medicine and biodiversity.Comment: Manuscript 43 pages with 3 tables; Supplemental material 43 pages with 3 table

    Mapping Patent Classifications: Portfolio and Statistical Analysis, and the Comparison of Strengths and Weaknesses

    Get PDF
    The Cooperative Patent Classifications (CPC) jointly developed by the European and US Patent Offices provide a new basis for mapping and portfolio analysis. This update provides an occasion for rethinking the parameter choices. The new maps are significantly different from previous ones, although this may not always be obvious on visual inspection. Since these maps are statistical constructs based on index terms, their quality--as different from utility--can only be controlled discursively. We provide nested maps online and a routine for portfolio overlays and further statistical analysis. We add a new tool for "difference maps" which is illustrated by comparing the portfolios of patents granted to Novartis and MSD in 2016.Comment: Scientometrics 112(3) (2017) 1573-1591; http://link.springer.com/article/10.1007/s11192-017-2449-

    A Survey on Semantic Processing Techniques

    Full text link
    Semantic processing is a fundamental research domain in computational linguistics. In the era of powerful pre-trained language models and large language models, the advancement of research in this domain appears to be decelerating. However, the study of semantics is multi-dimensional in linguistics. The research depth and breadth of computational semantic processing can be largely improved with new technologies. In this survey, we analyzed five semantic processing tasks, e.g., word sense disambiguation, anaphora resolution, named entity recognition, concept extraction, and subjectivity detection. We study relevant theoretical research in these fields, advanced methods, and downstream applications. We connect the surveyed tasks with downstream applications because this may inspire future scholars to fuse these low-level semantic processing tasks with high-level natural language processing tasks. The review of theoretical research may also inspire new tasks and technologies in the semantic processing domain. Finally, we compare the different semantic processing techniques and summarize their technical trends, application trends, and future directions.Comment: Published at Information Fusion, Volume 101, 2024, 101988, ISSN 1566-2535. The equal contribution mark is missed in the published version due to the publication policies. Please contact Prof. Erik Cambria for detail
    • …
    corecore