94,465 research outputs found
The Effects of Tidal Forcing on Nutrient Fluxes in the Tidal, Freshwater James River Estuary, VA
A 12-month study (January to December 2015) focused on the effects of tidal forcing on nutrient fluxes in the tidal, freshwater segment of the James River Estuary (JRE). Discrete sampling of nutrient chemistry and continuous monitoring of tidal discharge were used to determine the volume and timing of the tides, and differences in nutrient concentrations between incoming and outgoing tides. The goal of this study was to improve understanding of tidal influence on nutrient fluxes and their role in nutrient transport to the lower estuary. Results suggested that differences in nutrient concentrations between incoming and outgoing tides were small throughout the year. This finding suggests that nutrient fluxes at the study site, near the tidal fresh-oligohaline boundary of the James, are largely determined by tidal volume owing to weak concentrations gradients. Changes in water quality during seaward and landward tidal excursions into deeper versus shallower segments were analyzed to infer biogeochemical processes. Differences in oxygen production and nitrate utilization suggest greater autotrophy during landward excursions, consistent with more favorable light conditions. This work was conducted as a collaborative effort between Virginia Commonwealth University, the USGS, Randolph-Macon College, and Washington and Lee University participating in the “Mountains to the Sea” project
Recommended from our members
Proximate controls on semiarid soil greenhouse gas fluxes across 3 million years of soil development
Soils are important sources and sinks of three greenhouse gases (GHGs): carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O). However, it is unknown whether semiarid landscapes are important contributors to global fluxes of these gases, partly because our mechanistic understanding of soil GHG fluxes is largely derived from more humid ecosystems. We designed this study with the objective of identifying the important soil physical and biogeochemical controls on soil GHG fluxes in semiarid soils by observing seasonal changes in soil GHG fluxes across a three million year substrate age gradient in northern Arizona. We also manipulated soil nitrogen (N) and phosphorus availability with 7 years of fertilization and used regression tree analysis to identify drivers of unfertilized and fertilized soil GHG fluxes. Similar to humid ecosystems, soil N2O flux was correlated with changes in N and water availability and soil CO2 efflux was correlated with changes in water availability and temperature. Soil CH4 uptake was greatest in relatively colder and wetter soils. While fertilization had few direct effects on soil CH4 flux, soil nitrate was an important predictor of soil CH4 uptake in unfertilized soils and soil ammonium was an important predictor of soil CH4 uptake in fertilized soil. Like in humid ecosystems, N gas loss via nitrification or denitrification appears to increase with increases in N and water availability during ecosystem development. Our results suggest that, with some exceptions, the drivers of soil GHG fluxes in semiarid ecosystems are often similar to those observed in more humid ecosystems
Seasonal and inter-annual patterns of sediment-water nutrient and oxygen fluxes in Mobile Bay, Alabama (USA): Regulating factors and ecological significance.
Sediment oxygen and nutrient fluxes were measured monthly for 2 yr in Mobile Bay, Alabama, USA. Rates of sediment oxygen consumption (0.1 to 1.25 gO2 m-2 d-1), ammonium flux (-22 to 181 µmol m-2 h-1), nitrate flux (-14 to 67 µmol m-2 h-1), phosphate flux (-2 to 20.4 µmol m-2 h-1), and dissolved silicate flux (-15 to 342 µmol m-2 h-1) were moderate to high compared to values for other estuaries. A step-wise regression analysis revealed that dissolved oxygen concentration and temperature in bottom-waters explained much of the variance in fluxes. This is presumably because of their influence on rates of microbial and physico-chemical processes. Organic matter availability was not found to be an important factor in regulating temporal (month to month) variability of fluxes, possibly because frequent resuspension of the sediments in this shallow system rendered indices of sediment organic matter nearly constant with time. However, warm season-averaged sediment nutrient releases were correlated with sediment chlorophyll a. This relationship in Mobile Bay is in strong agreement with similar relationships found in other estuarine systems, and suggests that the availability of labile organic matter ultimately regulates the maximum rate of nutrient release by the sediments. Annually averaged sediment fluxes supplied 36% of the nitrogen (N) and 25% of the phosphorus (P) required by phytoplankton in Mobile Bay. While this is not particularly high compared to other estuaries, monthly estimates show that the sediments can supply from 0 to 94% of the N, and 0 to 83% of the P required by phytoplankton. In addition, flux ratios show that N and P are released from sediments at N:P ratios that rapidly switch from above (maximum 98) to below (minimum 1.2) that required for phytoplankton growth. This pattern is different from cooler temperate systems, where such switching is seasonally base
Spatially resolved monthly riverine fluxes of oxidised nitrogen (nitrate and nitrite) to the European shelf seas, 1960-2005
This report documents the methodology developed for statistically modelling the spatial and temporal patterns of oxidised nitrogen (nitrate plus nitrite) riverine fluxes into the coastal waters of northwestern Europe, over the period 1960-2005. The purpose of the study was to provide boundary data for a modelling study of new primary production in European waters. For the UK and Ireland, monthly freshwater discharges to a set of grid cells around the coastline were modelled from rainfall data and calibrated from detailed analyses performed for a subset of years with contrasting climatology. The mean and long-term trends in nitrate and nitrite content of the river discharges were modelled from Harmonised Monitoring Scheme data and flux estimates for each of the years of contrasting climateology. The product of the discharge rate and nitrogen content provided estimates of the monthly flux to each grid cell. Scandinavian inputs of nitrate and nitrite to the North Sea, Skagerrak and Kattegat were assembled from a composite of statistically modelled freshwater discharge, and recent estimates of nitrogen flux from national monitoring agencies. Fluxes of nitrate and nitrite from the rivers flowing into the North Sea from Germany, Netherlands and Belgium during 1960-2005 were assembled from previous analyses by researchers at the University of Hamburg. Nitrate and nitrite fluxes from French rivers flowing into the English Channel, in particular the Seine, were indirectly derived by correlation with the River Scheldt, calibrated from published estimates of annual fluxes. The results show the total oxidised nitrogen input to European shelf seas increasing from approximately 0.6Mt pa. in the 1960's to 1.2Mt pa. in the mid-1980's. Recent estimates of the annual flux since 2000 have been approximately 1.1Mt pa. Around 60-70% of the total annual flux to the northwest European shelf enters via the North Sea. Winter input rates are approximately twice those in the summer in all areas except the Skagerrak/Kattegat
Release of CO2 and CH4 from lakes and drainage ditches in temperate wetlands
Shallow fresh water bodies in peat areas are important contributors to greenhouse gas fluxes to the atmosphere. In this study we determined the magnitude of CH4 and CO2 fluxes from 12 water bodies in Dutch wetlands during the summer season and studied the factors that might regulate emissions of CH4 and CO2 from these lakes and ditches. The lakes and ditches acted as CO2 and CH4 sources of emissions to the atmosphere; the fluxes from the ditches were significantly larger than the fluxes from the lakes. The mean greenhouse gas flux from ditches and lakes amounted to 129.1 ± 8.2 (mean ± SE) and 61.5 ± 7.1 mg m-2 h-1 for CO2 and 33.7 ± 9.3 and 3.9 ± 1.6 mg m-2 h-1 for CH4, respectively. In most water bodies CH4 was the dominant greenhouse gas in terms of warming potential. Trophic status of the water and the sediment was an important factor regulating emissions. By using multiple linear regression 87% of the variation in CH4 could be explained by PO4 3- concentration in the sediment and Fe2+ concentration in the water, and 89% of the CO2 flux could be explained by depth, EC and pH of the water. Decreasing the nutrient loads and input of organic substrates to ditches and lakes by for example reducing application of fertilizers and manure within the catchments and decreasing upward seepage of nutrient rich water from the surrounding area will likely reduce summer emissions of CO2 and CH4 from these water bodie
Flux of nutrients from Russian rivers to the Arctic Ocean: Can we establish a baseline against which to judge future changes?
Climate models predict significant warming in the Arctic in the 21st century, which will impact the functioning of terrestrial and aquatic ecosystems as well as alter land‐ocean interactions in the Arctic. Because river discharge and nutrient flux integrate large‐scale processes, they should be sensitive indicators of change, but detection of future changes requires knowledge of current conditions. Our objective in this paper is to evaluate the current state of affairs with respect to estimating nutrient flux to the Arctic Ocean from Russian rivers. To this end we provide estimates of contemporary (1970s–1990s) nitrate, ammonium, and phosphate fluxes to the Arctic Ocean for 15 large Russian rivers. We rely primarily on the extensive data archives of the former Soviet Union and current Russian Federation and compare these values to other estimates and to model predictions. Large discrepancies exist among the various estimates. These uncertainties must be resolved so that the scientific community will have reliable data with which to calibrate Arctic biogeochemical models and so that we will have a baseline against which to judge future changes (either natural or anthropogenic) in the Arctic watershed
Modelling of sediment nutrient fluxes for a pulsed organic load
A sediment model has been developed to simulate the Sediment Oxygen Demand (SOD) and sediment nutrient fluxes after a sudden input of Particulate Organic Matter (POM). Compared with previous sediment models, the main advances are the use of a continuous function to represent the kinetics of POM diagenesis and inclusion of the biomass content in POM diagenesis. Laboratory experiments were also carried out to investigate the SOD dynamics and sediment nutrient fluxes after an input of fish food pellets into the sediment. The simulation results of SOD and nutrient fluxes compared fairly well with the experimental measurements. Copyright © 2011 Inderscience Enterprises Ltd.postprin
Scaling and optimal synergy: Two principles determining microbial growth in complex media
High-throughput experimental techniques and bioinformatics tools make it
possible to obtain reconstructions of the metabolism of microbial species.
Combined with mathematical frameworks such as flux balance analysis, which
assumes that nutrients are used so as to maximize growth, these reconstructions
enable us to predict microbial growth.
Although such predictions are generally accurate, these approaches do not
give insights on how different nutrients are used to produce growth, and thus
are difficult to generalize to new media or to different organisms.
Here, we propose a systems-level phenomenological model of metabolism
inspired by the virial expansion. Our model predicts biomass production given
the nutrient uptakes and a reduced set of parameters, which can be easily
determined experimentally. To validate our model, we test it against in silico
simulations and experimental measurements of growth, and find good agreement.
From a biological point of view, our model uncovers the impact that individual
nutrients and the synergistic interaction between nutrient pairs have on
growth, and suggests that we can understand the growth maximization principle
as the optimization of nutrient synergies.Comment: 31 pages, 13 figure
Influence of EU policy on agricultural nutrient losses and the state of receiving surface waters in Finland
In Finland, the first large-scale efforts to control nutrient loading from agriculture got under way with the introduction of the EU Agri-Environmental Program in 1995. We examined whether these efforts have decreased agricultural nutrient losses and improved the quality of receiving waters. To do so we used monitoring data on fluxes of nutrients and total suspended solids in agricultural catchments in 1990–2004 and on the water quality of agriculturally loaded rivers, lakes and estuaries in 1990–2005. No clear reduction in loading or improvement in water quality was detected. Hydrological fluctuations do not seem to have eclipsed the effects of the measures taken, since there was no systematic pattern in runoff in the period studied. The apparent inefficiency of the measures taken may be due to the large nutrient reserves of the soil, which slowed down nutrient reductions within the period studied. Simultaneous changes in agricultural production (e.g. regional specialisation) and in climate may also have counteracted the effects of agri-environmental measures. The actions to reduce agricultural loading might have been more successful had they focused specifically on the areas and actions that contribute most to the current loading
EU Peatlands: Current Carbon Stocks and Trace Gas Fluxes
Peatlands in Europe has formed a significant sink for atmospheric CO2 since the last glacial maximum. Currently they are estimated to hold ca. 42 Gt carbon in the form of peat and are therefore a considerable component in the European carbon budget. Due to the generally wet soil conditions in peatlands they are also significant emitters of the strong greenhouse gas (GHG) methane (CH4) and in some cases also of nitrous oxide (N2O). The EU funded CarboEurope-GHG Concerted Action attempts to develop a reliable and complete greenhouse gas budget for Europe and this report aims to provide a review and synthesis of the available information about GHG exchanges in European peatlands and their underlying processes. A best estimate for all the European countries shows that some are currently sinks for atmospheric CO2 while others are sources. In contrast, for CH4 and N2O, only the sources are relevant. Whilst some countries are CO2 sinks, all countries are net GHG emitters from peatlands. The results presented, however, carry large uncertainties, which cannot be adequately quantified yet. One outstanding uncertainty is the distribution of land use types, particular in Russia, the largest European peat nation. The synthesis of GHG exchange, nevertheless, indicates some interesting features. Russia hosts an estimated 41% of European peatlands and contributes most to all GHG exchanges (CO2: 25%, CH4: 52%, N2O: 26%, Total: 37%). Germany is the second-largest emitter (12% of European total) although it contains only 3.2% of European peatlands. The reason is the use of most of the peatland area for intensive cropland and grassland. The largest CO2 emitters are countries with large agricultural peatland areas (Russia, Germany, Belarus, Poland), the largest N2O emitters are those with large agricultural fen areas (Russia, Germany, Finland). In contrast, the largest CH4 emitters are concentrated in regions with large areas of intact mires, namely Russia and Scandinavia. High average emission densities above 3.5 t C-equiv. ha-1 are found in the Southeast Mediterranean, Germany and the Netherlands where agricultural use of peatlands is intense. Low average emission densities below 0.3 t C-equiv. ha-1 occur where mires and peatland forests dominate, e.g. Finland and the UK. This report concludes by pointing at key gaps in our knowledge about peatland carbon stocks and GHG exchanges which include insufficient basic information on areal distribution of peatlands, measurements of peat depth and also a lack of flux datasets providing full annual budgets of GHG exchanges
- …
