20 research outputs found

    Fast Deep Multi-patch Hierarchical Network for Nonhomogeneous Image Dehazing

    Full text link
    Recently, CNN based end-to-end deep learning methods achieve superiority in Image Dehazing but they tend to fail drastically in Non-homogeneous dehazing. Apart from that, existing popular Multi-scale approaches are runtime intensive and memory inefficient. In this context, we proposed a fast Deep Multi-patch Hierarchical Network to restore Non-homogeneous hazed images by aggregating features from multiple image patches from different spatial sections of the hazed image with fewer number of network parameters. Our proposed method is quite robust for different environments with various density of the haze or fog in the scene and very lightweight as the total size of the model is around 21.7 MB. It also provides faster runtime compared to current multi-scale methods with an average runtime of 0.0145s to process 1200x1600 HD quality image. Finally, we show the superiority of this network on Dense Haze Removal to other state-of-the-art models.Comment: CVPR Workshops Proceedings 202

    Breaking Through the Haze: An Advanced Non-Homogeneous Dehazing Method based on Fast Fourier Convolution and ConvNeXt

    Full text link
    Haze usually leads to deteriorated images with low contrast, color shift and structural distortion. We observe that many deep learning based models exhibit exceptional performance on removing homogeneous haze, but they usually fail to address the challenge of non-homogeneous dehazing. Two main factors account for this situation. Firstly, due to the intricate and non uniform distribution of dense haze, the recovery of structural and chromatic features with high fidelity is challenging, particularly in regions with heavy haze. Secondly, the existing small scale datasets for non-homogeneous dehazing are inadequate to support reliable learning of feature mappings between hazy images and their corresponding haze-free counterparts by convolutional neural network (CNN)-based models. To tackle these two challenges, we propose a novel two branch network that leverages 2D discrete wavelete transform (DWT), fast Fourier convolution (FFC) residual block and a pretrained ConvNeXt model. Specifically, in the DWT-FFC frequency branch, our model exploits DWT to capture more high-frequency features. Moreover, by taking advantage of the large receptive field provided by FFC residual blocks, our model is able to effectively explore global contextual information and produce images with better perceptual quality. In the prior knowledge branch, an ImageNet pretrained ConvNeXt as opposed to Res2Net is adopted. This enables our model to learn more supplementary information and acquire a stronger generalization ability. The feasibility and effectiveness of the proposed method is demonstrated via extensive experiments and ablation studies. The code is available at https://github.com/zhouh115/DWT-FFC.Comment: Accepted by CVPRW 202

    Streamlined Global and Local Features Combinator (SGLC) for High Resolution Image Dehazing

    Full text link
    Image Dehazing aims to remove atmospheric fog or haze from an image. Although the Dehazing models have evolved a lot in recent years, few have precisely tackled the problem of High-Resolution hazy images. For this kind of image, the model needs to work on a downscaled version of the image or on cropped patches from it. In both cases, the accuracy will drop. This is primarily due to the inherent failure to combine global and local features when the image size increases. The Dehazing model requires global features to understand the general scene peculiarities and the local features to work better with fine and pixel details. In this study, we propose the Streamlined Global and Local Features Combinator (SGLC) to solve these issues and to optimize the application of any Dehazing model to High-Resolution images. The SGLC contains two successive blocks. The first is the Global Features Generator (GFG) which generates the first version of the Dehazed image containing strong global features. The second block is the Local Features Enhancer (LFE) which improves the local feature details inside the previously generated image. When tested on the Uformer architecture for Dehazing, SGLC increased the PSNR metric by a significant margin. Any other model can be incorporated inside the SGLC process to improve its efficiency on High-Resolution input data.Comment: Accepted in CVPR 2023 Workshop

    A Data-Centric Solution to NonHomogeneous Dehazing via Vision Transformer

    Full text link
    Recent years have witnessed an increased interest in image dehazing. Many deep learning methods have been proposed to tackle this challenge, and have made significant accomplishments dealing with homogeneous haze. However, these solutions cannot maintain comparable performance when they are applied to images with non-homogeneous haze, e.g., NH-HAZE23 dataset introduced by NTIRE challenges. One of the reasons for such failures is that non-homogeneous haze does not obey one of the assumptions that is required for modeling homogeneous haze. In addition, a large number of pairs of non-homogeneous hazy image and the clean counterpart is required using traditional end-to-end training approaches, while NH-HAZE23 dataset is of limited quantities. Although it is possible to augment the NH-HAZE23 dataset by leveraging other non-homogeneous dehazing datasets, we observe that it is necessary to design a proper data-preprocessing approach that reduces the distribution gaps between the target dataset and the augmented one. This finding indeed aligns with the essence of data-centric AI. With a novel network architecture and a principled data-preprocessing approach that systematically enhances data quality, we present an innovative dehazing method. Specifically, we apply RGB-channel-wise transformations on the augmented datasets, and incorporate the state-of-the-art transformers as the backbone in the two-branch framework. We conduct extensive experiments and ablation study to demonstrate the effectiveness of our proposed method.Comment: Accepted by CVPRW 202

    Non-Homogeneous Haze Removal via Artificial Scene Prior and Bidimensional Graph Reasoning

    Full text link
    Due to the lack of natural scene and haze prior information, it is greatly challenging to completely remove the haze from single image without distorting its visual content. Fortunately, the real-world haze usually presents non-homogeneous distribution, which provides us with many valuable clues in partial well-preserved regions. In this paper, we propose a Non-Homogeneous Haze Removal Network (NHRN) via artificial scene prior and bidimensional graph reasoning. Firstly, we employ the gamma correction iteratively to simulate artificial multiple shots under different exposure conditions, whose haze degrees are different and enrich the underlying scene prior. Secondly, beyond utilizing the local neighboring relationship, we build a bidimensional graph reasoning module to conduct non-local filtering in the spatial and channel dimensions of feature maps, which models their long-range dependency and propagates the natural scene prior between the well-preserved nodes and the nodes contaminated by haze. We evaluate our method on different benchmark datasets. The results demonstrate that our method achieves superior performance over many state-of-the-art algorithms for both the single image dehazing and hazy image understanding tasks
    corecore