253,346 research outputs found

    Faraday Tomography of the North Polar Spur: Constraints on the distance to the Spur and on the Magnetic Field of the Galaxy

    Get PDF
    We present radio continuum and polarization images of the North Polar Spur (NPS) from the Global Magneto-Ionic Medium Survey (GMIMS) conducted with the Dominion Radio Astrophysical Observatory 26-m Telescope. We fit polarization angle versus wavelength squared over 2048 frequency channels from 1280 to 1750 MHz to obtain a Faraday Rotation Measure (RM) map of the NPS. Combining this RM map with a published Faraday depth map of the entire Galaxy in this direction, we derive the Faraday depth introduced by the NPS and the Galactic interstellar medium (ISM) in front of and behind the NPS. The Faraday depth contributed by the NPS is close to zero, indicating that the NPS is an emitting only feature. The Faraday depth caused by the ISM in front of the NPS is consistent with zero at b>50 degree, implying that this part of the NPS is local at a distance of approximately several hundred parsecs. The Faraday depth contributed by the ISM behind the NPS gradually increases with Galactic latitude up to b=44 degree, and decreases at higher Galactic latitudes. This implies that either the part of the NPS at b<44 degree is distant or the NPS is local but there is a sign change of the large-scale magnetic field. If the NPS is local, there is then no evidence for a large-scale anti-symmetry pattern in the Faraday depth of the Milky Way. The Faraday depth introduced by the ISM behind the NPS at latitudes b>50 degree can be explained by including a coherent vertical magnetic field.Comment: 9 pages, 8 figures, accepted for publication in ApJ. Some figures have been degraded to reduce sizes, for a high resolution version, see http://physics.usyd.edu.au/~xhsun/ms_nps.pd

    Second-harmonic generation of ZnO nanoparticles synthesized by laser ablation of solids in liquids

    Get PDF
    We report the synthesis of small zinc oxide nanoparticles (ZnO NPs) based colloidal suspensions and the study of second-harmonic generation from aggregated ZnO NPs deposited on glass substrates. The colloidal suspensions were obtained using the laser ablation of solids in liquids technique, ablating a Zn solid target immersed in acetone as the liquid medium, with ns-laser pulses (1064 nm) of a Nd-YAG laser. The per pulse laser fluence, the laser repetition rate frequency and the ablation time were kept constant. The absorption evolution of the obtained suspensions was optically characterized through absorption spectroscopy until stabilization. Raman spectroscopy, SEM and HRTEM were used to provide evidence of the ZnO NPs structure. HRTEM results showed that 5–8 nm spheroids ZnO NPs were obtained. Strong second-harmonic signal is obtained from random ZnO monocrystalline NPs and from aggregated ZnO NPs, suggesting that the high efficiency of the nonlinear process may not depend on the NPs size or aggregation state

    Newly Introduced NPs and given NPs in Bantik discourse

    Get PDF

    Today@NPS / December 2015

    Get PDF
    Today@NPS showcases some of the speakers, conferences, experiments, lectures and other events that take place at the Naval Postgraduate Schoo

    Synthesis of Al and Ag nanoparticles through ultra-sonic dissociation of thermal evaporation deposited thin films for promising clinical applications as polymer nanocomposite

    Get PDF
    Nanoparticles (NPs) having well-defined shape, size and clean surface serve as ideal model system to investigate surface/interfacial reactions. Ag and Al NPs are receiving great interest due to their wide applications in bio-medical field, aerospace and space technology as combustible additives in propellants and hydrogen generation. Hence, in this study, we have synthesized Ag and Al NPs using an innovative approach of ultra-sonic dissociation of thin films. Phase and particle size distributions of the Ag and Al NPs have been determined by X-ray diffraction (XRD) and transmission electron microscopy (TEM). Thin film dissociation/dissolution mechanism, hence conversion into NPs has been characterized by SEM- scanning electron microscope. EDXA & ICPMS have been performed for chemical analysis of NPs. Optical properties have been characterized by UV-Vis and PL spectroscopy. These NPs have also been investigated for their anti-bacterial activity against Escherichia coli bacteria. To the best of our knowledge, this is the first time when NPs has been synthesized by ultra-sonic dissociation of thin films. As an application, these NPs were used further for synthesis of nanocomposite polymer membranes, which show excellent activity against bio film formation

    Is There a Negative Thermal Expansion in Supported Metal Nanoparticles? An In-Situ X-ray Absorption Study Coupled with Neural Network Analysis

    No full text
    Interactions with their support, adsorbates and unique structural motifs are responsible for the many intriguing properties and potential applications of supported metal nanoparticles (NPs). At the same time, they complicate the interpretation of experimental data. In fact, the methods and approaches that work well for the ex situ analysis of bulk materials may be inaccurate or introduce artifacts in the in situ analysis of nanomaterials. Here we revisit the controversial topic of negative thermal expansion and anomalies in the Debye temperature reported for oxide-supported metal NPs. In situ X-ray absorption experimental data collected for Pt NPs in ultrahigh vacuum and an advanced data analysis approach based on an artificial neural network demonstrate that Pt NPs do not exhibit intrinsic negative thermal expansion. Similarly as for bulk materials, in the absence of adsorbates the bond lengths in metal NPs increase with temperature. The previously reported anomalies in particle size-dependent Debye temperatures can also be linked to the artifacts in the interpretation of conventional X-ray absorption data of disordered materials such as NPs

    Nanoplastics: From tissue accumulation to cell translocation into Mytilus galloprovincialis hemocytes. resilience of immune cells exposed to nanoplastics and nanoplastics plus Vibrio splendidus combination

    Get PDF
    Plastic litter is an issue of global concern. In this work Mytilus galloprovincialis was used to study the distribution and effects of polystyrene nanoplastics (PS NPs) of different sizes (50 nm, 100 nm and 1 mu m) on immune cells. Internalization and translocation of NPs to hemolymph were carried out by in vivo experiments, while endocytic routes and effects of PS NPs on hemocytes were studied in vitro. The smallest PS NPs tested were detected in the digestive gland and muscle. A fast and size-dependent translocation of PS NPs to the hemolymph was recorded after 3 h of exposure. The internalization rate of 50 nm PS NPs was lower when caveolae and clathrin endocytosis pathways were inhibited. On the other hand, the internalization of larger particles decreased when phagocytosis was inhibited. The hemocytes exposed to NPs had changes in motility, apoptosis, ROS and phagocytic capacity. However, they showed resilience when were infected with bacteria after PS NP exposure being able to recover their phagocytic capacity although the expression of the antimicrobial peptide Myticin C was reduced. Our findings show for the first time the translocation of PS NPs into hemocytes and how their effects trigger the loss of its functional parameters

    Impact of BaTiO3_3 nanoparticles on phase transitions and dynamics in nematic liquid crystal - temperature and pressure studies

    Full text link
    Broadband dielectric spectroscopy (BDS) of pure 5OCB and nanocolloids consisting of 5OCB and paraelectric or ferroelectric BaTiO3{_3} nanoparticles (NPs) was performed on varying pressure or temperature. We found strong impact of NPs on static and dynamic phase behavior. In particular, strongest effects on pretransitional behavior were observed for a relatively low concentration of NPs which we attribute to the NPs-induced disorder. Paramagnetic or ferromagnetic character of NPs did not significantly influence measurements. However, several features measured using temperature or pressure path in nanocolloids where significantly different, contrary to the observed behaviour in pure LC compounds. Dynamical properties were tested using the FDSE (fractional Debye-Stokes-Einstein) relation, yielding the fractional coefficient S = 0.71 and S = 0.3 for the temperature and pressure path, respectively
    corecore