303,546 research outputs found

    Tropically convex constraint satisfaction

    Full text link
    A semilinear relation S is max-closed if it is preserved by taking the componentwise maximum. The constraint satisfaction problem for max-closed semilinear constraints is at least as hard as determining the winner in Mean Payoff Games, a notorious problem of open computational complexity. Mean Payoff Games are known to be in the intersection of NP and co-NP, which is not known for max-closed semilinear constraints. Semilinear relations that are max-closed and additionally closed under translations have been called tropically convex in the literature. One of our main results is a new duality for open tropically convex relations, which puts the CSP for tropically convex semilinaer constraints in general into NP intersected co-NP. This extends the corresponding complexity result for scheduling under and-or precedence constraints, or equivalently the max-atoms problem. To this end, we present a characterization of max-closed semilinear relations in terms of syntactically restricted first-order logic, and another characterization in terms of a finite set of relations L that allow primitive positive definitions of all other relations in the class. We also present a subclass of max-closed constraints where the CSP is in P; this class generalizes the class of max-closed constraints over finite domains, and the feasibility problem for max-closed linear inequalities. Finally, we show that the class of max-closed semilinear constraints is maximal in the sense that as soon as a single relation that is not max-closed is added to L, the CSP becomes NP-hard.Comment: 29 pages, 2 figure

    Some results on rational surfaces and Fano varieties

    Get PDF
    The goal of this article is to study the equations and syzygies of embeddings of rational surfaces and certain Fano varieties. Given a rational surface X and an ample and base-point-free line bundle L on X, we give an optimal numerical criterion for L to satisfy property Np. This criterion turns out to be a characterization of property Np if X is anticanonical. We also prove syzygy results for adjunction bundles and a Reider type theorem for higher syzygies. For certain Fano varieties we also prove results on very ampleness and higher syzygies.Comment: 26 pages, AMSTe

    Complexity of Coloring Graphs without Paths and Cycles

    Full text link
    Let PtP_t and CC_\ell denote a path on tt vertices and a cycle on \ell vertices, respectively. In this paper we study the kk-coloring problem for (Pt,C)(P_t,C_\ell)-free graphs. Maffray and Morel, and Bruce, Hoang and Sawada, have proved that 3-colorability of P5P_5-free graphs has a finite forbidden induced subgraphs characterization, while Hoang, Moore, Recoskie, Sawada, and Vatshelle have shown that kk-colorability of P5P_5-free graphs for k4k \geq 4 does not. These authors have also shown, aided by a computer search, that 4-colorability of (P5,C5)(P_5,C_5)-free graphs does have a finite forbidden induced subgraph characterization. We prove that for any kk, the kk-colorability of (P6,C4)(P_6,C_4)-free graphs has a finite forbidden induced subgraph characterization. We provide the full lists of forbidden induced subgraphs for k=3k=3 and k=4k=4. As an application, we obtain certifying polynomial time algorithms for 3-coloring and 4-coloring (P6,C4)(P_6,C_4)-free graphs. (Polynomial time algorithms have been previously obtained by Golovach, Paulusma, and Song, but those algorithms are not certifying); To complement these results we show that in most other cases the kk-coloring problem for (Pt,C)(P_t,C_\ell)-free graphs is NP-complete. Specifically, for =5\ell=5 we show that kk-coloring is NP-complete for (Pt,C5)(P_t,C_5)-free graphs when k4k \ge 4 and t7t \ge 7; for 6\ell \ge 6 we show that kk-coloring is NP-complete for (Pt,C)(P_t,C_\ell)-free graphs when k5k \ge 5, t6t \ge 6; and additionally, for =7\ell=7, we show that kk-coloring is also NP-complete for (Pt,C7)(P_t,C_7)-free graphs if k=4k = 4 and t9t\ge 9. This is the first systematic study of the complexity of the kk-coloring problem for (Pt,C)(P_t,C_\ell)-free graphs. We almost completely classify the complexity for the cases when k4,4k \geq 4, \ell \geq 4, and identify the last three open cases

    On Minimum Maximal Distance-k Matchings

    Full text link
    We study the computational complexity of several problems connected with finding a maximal distance-kk matching of minimum cardinality or minimum weight in a given graph. We introduce the class of kk-equimatchable graphs which is an edge analogue of kk-equipackable graphs. We prove that the recognition of kk-equimatchable graphs is co-NP-complete for any fixed k2k \ge 2. We provide a simple characterization for the class of strongly chordal graphs with equal kk-packing and kk-domination numbers. We also prove that for any fixed integer 1\ell \ge 1 the problem of finding a minimum weight maximal distance-22\ell matching and the problem of finding a minimum weight (21)(2 \ell - 1)-independent dominating set cannot be approximated in polynomial time in chordal graphs within a factor of δlnV(G)\delta \ln |V(G)| unless P=NP\mathrm{P} = \mathrm{NP}, where δ\delta is a fixed constant (thereby improving the NP-hardness result of Chang for the independent domination case). Finally, we show the NP-hardness of the minimum maximal induced matching and independent dominating set problems in large-girth planar graphs.Comment: 15 pages, 4 figure

    Quantification and a Molecular Dynamics Study of Viral Membrane Lipids through Plasmon Coupling Microscopy

    Full text link
    Phosphatidylserine (PS) and monosialotetrahexosylganglioside (G_M1) are examples of two host-derived lipids in the membrane of enveloped virus particles that are known to contribute to virus attachment, uptake, and ultimately dissemination. A quantitative characterization of their contribution to the functionality of the virus requires information about their relative concentrations in the viral membrane. Here, a gold nanoparticle (NP) binding assay for probing relative PS and G_M1 lipid concentrations in the outer leaflet of different HIV-1 and Ebola virus-like particles (VLPs) using sample sizes of less than 3×10^6 particles is introduced. The assay evaluates both scattering intensity and resonance wavelength and determines relative NP densities through plasmon coupling as a measure for the target lipid concentrations in the NP-labeled VLP membrane. In addition, the mechanical properties of the viral membrane have been found to be contributing to the efficient reproduction cycle of the virus. Membrane fluidity which is a function of temperature and membrane composition is one of the crucial factors in viral activity. We have used temporally-resolved microscopy on silver NPs to track these molecular dynamics

    Control of the plasmonic resonance of a graphene coated plasmonic nanoparticle array combined with a nematic liquid crystal

    Get PDF
    We report on the fabrication and characterization of a switchable plasmonic device based on a conductive graphene oxide (cGO) coated plasmonic nanoparticle (NP) array, layered with nematic liquid crystal (NLC) as an active medium. A monolayer of NPs has been immobilized on a glass substrate through electrostatic interaction, and then grown in place using nanochemistry. This monolayer is then coated with a thin (less then 100nm) cGO film which acts simultaneously as both an electro-conductive and active medium. The combination of the conductive NP array with a separate top cover substrate having both cGO and a standard LC alignment layer is used for aligning a NLC film in a hybrid configuration. The system is analysed in terms of morphological and electro-optical properties. The spectral response of the sample characterized after each element is added (air, cGO, NLC) reveals a red-shift of the localized plasmonic resonance (LPR) frequency of approximately 62nm with respect to the NP array surrounded by air. The application of an external voltage (8Vpp) is suitable to modulate (blue shift) the LPR frequency by approximately 22nm
    corecore