2 research outputs found

    Delay Violation Probability and Effective Rate of Downlink NOMA over α\alpha-μ\mu Fading Channels

    Full text link
    Non-orthogonal multiple access (NOMA) is a potential candidate to further enhance the spectrum utilization efficiency in beyond fifth-generation (B5G) standards. However, there has been little attention on the quantification of the delay-limited performance of downlink NOMA systems. In this paper, we analyze the performance of a two-user downlink NOMA system over generalized {\alpha}-{\mu} fading in terms of delay violation probability (DVP) and effective rate (ER). In particular, we derive an analytical expression for an upper bound on the DVP and we derive the exact sum ER of the downlink NOMA system. We also derive analytical expressions for high and low signal-to-noise ratio (SNR) approximations to the sum ER, as well as a fundamental upper bound on the sum ER which represents the ergodic sum-rate for the downlink NOMA system. We also analyze the sum ER of a corresponding time-division-multiplexed orthogonal multiple access (OMA) system. Our results show that while NOMA consistently outperforms OMA over the practical SNR range, the relative gain becomes smaller in more severe fading conditions, and is also smaller in the presence a more strict delay quality-of-service (QoS) constraint.Comment: 14 pages, 12 figure

    Performance Analysis and Optimization of NOMA with HARQ for Short Packet Communications in Massive IoT

    Full text link
    In this paper, we consider the massive non-orthogonal multiple access (NOMA) with hybrid automatic repeat request (HARQ) for short packet communications. To reduce the latency, each user can perform one re-transmission provided that the previous packet was not decoded successfully. The system performance is evaluated for both coordinated and uncoordinated transmissions. We first develop a Markov model (MM) to analyze the system dynamics and characterize the packet error rate (PER) and throughput of each user in the coordinated scenario. The power levels are then optimized for two scenarios, including the power constrained and reliability constrained scenarios. A simple yet efficient dynamic cell planning is also designed for the uncoordinated scenario. Numerical results show that both coordinated and uncoordinated NOMA-HARQ with a limited number of retransmissions can achieve the desired level of reliability with the guaranteed latency using a proper power control strategy. Results also show that NOMA-HARQ achieves a higher throughput compared to the orthogonal multiple access scheme with HARQ under the same average received power constraint at the base station
    corecore