28,812 research outputs found
Kinetics and cellular site of glycolipid loading control
CD1d-restricted natural killer T cells (NKT cells) possess a wide range of effector and regulatory
activities that are related to their ability to secrete both T helper 1 (Th1) cell- and Th2 cell-type
cytokines. We analyzed presentation of NKT cell activating α galactosylceramide (αGalCer) analogs
that give predominantly Th2 cell-type cytokine responses to determine how ligand structure controls
the outcome of NKT cell activation. Using a monoclonal antibody specific for αGalCer-CD1d
complexes to visualize and quantitate glycolipid presentation, we found that Th2 cell-type cytokinebiasing
ligands were characterized by rapid and direct loading of cell-surface CD1d proteins.
Complexes formed by association of these Th2 cell-type cytokine-biasing αGalCer analogs with
CD1d showed a distinctive exclusion from ganglioside-enriched, detergent-resistant plasma
membrane microdomains of antigen-presenting cells. These findings help to explain how subtle
alterations in glycolipid ligand structure can control the balance of proinflammatory and antiinflammatory
activities of NKT cells
Genetic Regulation of NKT Cell Function
NKT cells are specialized T cells that play important roles in the host immune response to bacteria and viruses. NKT cells produce a wide variety of cytokines and chemokines after being activated by glycolipids such as α-galactosylceramide (αGalCer). Previous work suggested that the ability of NKT cells to be activated by aGalCer mapped to a genetic region encompassing a gene family (Slam genes) that is known to be important in NKT cell development, but the exact gene in this region which regulates NKT cells is unknown. This study utilizes a panel of C57BL/6 (B6) mice containing different regions of chromosome 1 derived from 129X1/SvJ mice (B6.129 congenics) to identify candidate genes regulating NKT cell function by positionally mapping the genes within this locus. We assessed NKT cell function in B6.129c2 (C2), B6.129c3 (C3), and B6.129c4 (C4) mice, which contain 129 intervals ranging from 0.1-1 megabase pairs (Mbp). To assess NKT cell function, we injected mice with αGalCer, which specifically activates NKT cells. Flow cytometry was utilized to determine NKT cell IL-4, TNF, and IFN-g expression on a per cell basis and ELISA assays were conducted to observe the overall magnitude of the NKT cell response. There was a significant reduction in the TNF, IL-4, and IFNγ production in all congenic mice as compared to B6 controls. These data suggested that the NKT cell response to αGalCer mapped to a 0.1 Mbp region on chromosome 1 (the C3 interval), which excluded Slam genes as potential genes regulating these NKT cell functions. Possible candidate genes of interest in this locus are ApoA2, which encodes a protein involved in lipid transport, and Fcer1g, which encodes a protein that has recently been implicated in the development of different NKT cell subsets
Immune evasion of the CD1d/NKT cell axis
Many reviews on the CD1d/NKT cell axis focus on the ability of CD1d-restricted NKT cells to serve as effector cells in a variety of disorders, be they infectious diseases, cancer or autoimmunity. In contrast, here, we discuss the ways that viruses, bacteria and tumor cells can evade the CD1d/NKT cell axis. As a result, these disease states have a better chance to establish a foothold and potentially cause problems for the subsequent adaptive immune response, as the host tries to rid itself of infections or tumors
NKT sublineage specification and survival requires the ubiquitin-modifying enzyme TNF AIP3/A20
Natural killer T (NKT) cells are innate lymphocytes that differentiate into NKT1, NKT2, and NKT17 sublineages during development. However, the signaling events that control NKT sublineage specification and differentiation remain poorly understood. Here, we demonstrate that the ubiquitin-modifying enzyme TNF AIP3/A20, an upstream regulator of T cell receptor (TCR) signaling in T cells, is an essential cell-intrinsic regulator of NKT differentiation. A20 is differentially expressed during NKT cell development, regulates NKT cell maturation, and specifically controls the differentiation and survival of NKT1 and NKT2, but not NKT17, sublineages. Remaining A20-deficient NKT1 and NKT2 thymocytes are hyperactivated in vivo and secrete elevated levels of Th1 and Th2 cytokines after TCR ligation in vitro. Defective NKT development was restored by compound deficiency of MALT1, a key downstream component of TCR signaling in T cells. These findings therefore show that negative regulation of TCR signaling during NKT development controls the differentiation and survival of NKT1 and NKT2 cells
Alterations in cellular metabolism modulate CD1d-mediated NKT-cell responses
Natural killer T (NKT) cells play a critical role in the host's innate immune response. CD1d-mediated presentation of glycolipid antigens to NKT cells has been established; however, the mechanisms by which NKT cells recognize infected or cancerous cells remain unclear. 5′-AMP activated protein kinase (AMPK) is a master regulator of lipogenic pathways. We hypothesized that activation of AMPK during infection and malignancy could alter the repertoire of antigens presented by CD1d and serve as a danger signal to NKT cells. In this study, we examined the effect of alterations in metabolism on CD1d-mediated antigen presentation to NKT cells and found that an infection with lymphocytic choriomeningitis virus rapidly increased CD1d-mediated antigen presentation. Hypoxia inducible factors (HIF) enhance T-cell effector functions during infection, therefore antigen presenting cells pretreated with pharmacological agents that inhibit glycolysis, induce HIF and activate AMPK were assessed for their ability to induce NKT-cell responses. Pretreatment with 2-deoxyglucose, cobalt chloride, AICAR and metformin significantly enhanced CD1d-mediated NKT-cell activation. In addition, NKT cells preferentially respond to malignant B cells and B-cell lymphomas express HIF-1α. These data suggest that targeting cellular metabolism may serve as a novel means of inducing innate immune responses
Border patrol gone awry: Lung NKT cell activation by Francisella tularensis exacerbates tularemia-like disease
The respiratory mucosa is a major site for pathogen invasion and, hence, a site requiring constant immune surveillance. The type I, semi-invariant natural killer T (NKT) cells are enriched within the lung vasculature. Despite optimal positioning, the role of NKT cells in respiratory infectious diseases remains poorly understood. Hence, we assessed their function in a murine model of pulmonary tularemia--because tularemia is a sepsis-like proinflammatory disease and NKT cells are known to control the cellular and humoral responses underlying sepsis. Here we show for the first time that respiratory infection with Francisella tularensis live vaccine strain resulted in rapid accumulation of NKT cells within the lung interstitium. Activated NKT cells produced interferon-γ and promoted both local and systemic proinflammatory responses. Consistent with these results, NKT cell-deficient mice showed reduced inflammatory cytokine and chemokine response yet they survived the infection better than their wild type counterparts. Strikingly, NKT cell-deficient mice had increased lymphocytic infiltration in the lungs that organized into tertiary lymphoid structures resembling induced bronchus-associated lymphoid tissue (iBALT) at the peak of infection. Thus, NKT cell activation by F. tularensis infection hampers iBALT formation and promotes a systemic proinflammatory response, which exacerbates severe pulmonary tularemia-like disease in mice
Critical role of NKT cells in posttransplant alloantibody production
We previously reported that posttransplant alloantibody production in CD8-deficient hosts is IL-4+ CD4+ T cell-dependent and IgG1 isotype-dominant. The current studies investigated the hypothesis that IL-4-producing natural killer T cells (NKT cells) contribute to maximal alloantibody production. To investigate this, alloantibody levels were examined in CD8-deficient WT, CD1d KO and Jα18 KO transplant recipients. We found that the magnitude of IgG1 alloantibody production was critically dependent on the presence of type I NKT cells, which are activated by day 1 posttransplant. Unexpectedly, type I NKT cell contribution to enhanced IgG1 alloantibody levels was interferon-γ-dependent and IL-4-independent. Cognate interactions between type I NKT and B cells alone do not stimulate alloantibody production. Instead, NKT cells appear to enhance maturation of IL-4+ CD4+ T cells. To our knowledge, this is the first report to substantiate a critical role for type I NKT cells in enhancing in vivo antibody production in response to endogenous antigenic stimuli
PLZF Controls the Expression of a Limited Number of Genes Essential for NKT Cell Function
Natural killer (NKT) T cells exhibit tissue distribution, surface phenotype, and functional responses that are strikingly different from those of conventional T cells. The transcription factor PLZF is responsible for most of these properties, as its ectopic expression in conventional T cells is sufficient to confer to them an NKT-like phenotype. The molecular program downstream of PLZF, however, is largely unexplored. Here we report that PLZF regulates the expression of a surprisingly small set of genes, many with known immune functions. This includes several established components of the NKT cell developmental program. Expression of the transcriptional regulators Id2, previously shown to be required for iNKT cell survival in the liver and c-Maf, which shapes the NKT cytokine profile, was compromised in PLZF-deficient cells. Ectopic expression of c-Maf complemented the cells’ defect in producing IL-4 and IL-10. PLZF also induced a program of cell surface receptors which shape the NKT cell’s response to external stimuli, including the costimulatory receptor ICOS and the cytokine receptors IL12rb1 and IL18r1. As an ensemble, the known functions of the molecules whose expression is affected by PLZF explain many defects observed in NKT cells
Recommended from our members
SAP-Dependent and -Independent Regulation of Innate T Cell Development Involving SLAMF Receptors
Signaling lymphocytic activation molecule (SLAM)-associated protein (SAP) plays an essential role in the immune system mediating the function of several members of the SLAM family (SLAMF) of receptors, whose expression is essential for T, NK, and B-cell responses. Additionally, the expression of SAP in double-positive thymocytes is mandatory for natural killer T (NKT) cells and, in mouse, for innate CD8+ T cell development. To date, only two members of the SLAMF of receptors, Slamf1 and Slamf6, have been shown to positively cooperate during NKT cell differentiation in mouse. However, it is less clear whether other members of this family may also participate in the development of these innate T cells. Here, we show that Slamf[1 + 6]−/− and Slamf[1 + 5 + 6]−/−B6 mice have ~70% reduction of NKT cells compared to wild-type B6 mice. Unexpectedly, the proportion of innate CD8+ T cells slightly increased in the Slamf[1 + 5 + 6]−/−, but not in the Slamf[1 + 6]−/− strain, suggesting that Slamf5 may function as a negative regulator of innate CD8+ T cell development. Accordingly, Slamf5−/− B6 mice showed an exclusive expansion of innate CD8+ T cells, but not NKT cells. Interestingly, the SAP-independent Slamf7−/− strain showed an expansion of both splenic innate CD8+ T cells and thymic NKT cells. On the other hand, and similar to what was recently shown in Slamf3−/− BALB/c mice, the proportions of thymic promyelocytic leukemia zinc finger (PLZFhi) NKT cells and innate CD8+ T cells significantly increased in the SAP-independent Slamf8−/− BALB/c strain. In summary, these results show that NKT and innate CD8+ T cell development can be regulated in a SAP-dependent and -independent fashion by SLAMF receptors, in which Slamf1, Slamf6, and Slamf8 affect development of NKT cells, and that Slamf5, Slamf7, and Slamf8 affect the development of innate CD8+ T cells
- …
