4 research outputs found

    NETWORKING 2010: 9th International IFIP TC 6 Networking Conference, Chennai, India, May 11-15, 2010, Proceedings

    No full text
    International audienceBook Front Matter of LNCS 609

    Efficient Algorithms to Enhance Recovery Schema in Link State Protocols

    Full text link
    With the increasing demands for real-time applications traffic in net- works such as video and voice a high convergence time for the existing routing protocols when failure occurred is required. These applications can be very sensitive to packet loss when link/node goes down. In this paper, we propose two algorithms schemas for the link state protocol to reroute the traffic in two states; first, pre-calculated an alternative and disjoint path with the primary one from the source to the destination by re-routing traffic through it, regardless of the locations of failure and the number of failed links. Second, rerouting the traffic via an alternative path from a node whose local link is down without the need to wait until the source node knows about the failure. This is achieved by creating a new backup routing table based on the original routing table which is computed by the dijkstra algorithm. The goal of these algorithms is to reduce loss of packets, end-to-end delay time, improve throughput and avoiding local loop when nodes re-converge the topology in case of failure.Comment: 15 page

    An Adaptive Information Quantity-Based Broadcast Protocol for Safety Services in VANET

    Get PDF

    An Adaptive Information Quantity-Based Broadcast Protocol for Safety Services in VANET

    Get PDF
    Vehicle-to-vehicle communication plays a significantly important role in implementing safe and efficient road traffic. When disseminating safety messages in the network, the information quantity on safety packets changes over time and space. However, most of existing protocols view each packet the same to disseminate, preventing vehicles from collecting more recent and precise safety information. Hence, an information quantity-based broadcast protocol is proposed in this paper to ensure the efficiency of safety messages dissemination. In particular, we propose the concept of emergency-degree to evaluate packets' information quantity. Then we present EDCast, an emergency-degree-based broadcast protocol. EDCast differentiates each packet's priority for accessing the channel based on its emergency-degree so as to provide vehicles with more safety information timely and accurately. In addition, an adaptive scheme is presented to ensure fast dissemination of messages in different network condition. We compare the performance of EDCast with those of three other representative protocols in a typical highway scenario. Simulation results indicate that EDCast achieves higher broadcast efficiency and less redundancy with less delivery delay. What we found demonstrates that it is feasible and necessary for incorporating information quantity of messages in designing an efficient safety message broadcast protocol
    corecore