701 research outputs found

    SCUBA - A submillimetre camera operating on the James Clerk Maxwell Telescope

    Full text link
    The Submillimetre Common-User Bolometer Array (SCUBA) is one of a new generation of cameras designed to operate in the submillimetre waveband. The instrument has a wide wavelength range covering all the atmospheric transmission windows between 300 and 2000 microns. In the heart of the instrument are two arrays of bolometers optimised for the short (350/450 microns) and long (750/850 microns) wavelength ends of the submillimetre spectrum. The two arrays can be used simultaneously, giving a unique dual-wavelength capability, and have a 2.3 arc-minute field of view on the sky. Background-limited performance is achieved by cooling the arrays to below 100 mK. SCUBA has now been in active service for over a year, and has already made substantial breakthroughs in many areas of astronomy. In this paper we present an overview of the performance of SCUBA during the commissioning phase on the James Clerk Maxwell Telescope (JCMT).Comment: 14 pages, 13 figures (1 JPEG), Proc SPIE vol 335

    Constraining the evolution of CII intensity through the end stages of reionization

    Full text link
    We combine available constraints on the local CII 158 μ\mum line luminosity function from galaxy observations (Hemmati et al. 2017), with the evolution of the star-formation rate density and the recent CII intensity mapping measurement in Pullen et al. (2018, assuming detection), to derive the evolution of the CII luminosity - halo mass relation over z06z \sim 0-6. We develop convenient fitting forms for the evolution of the CII luminosity - halo mass relation, and forecast constraints on the CII intensity mapping power spectrum and its associated uncertainty across redshifts. We predict the sensitivities to detect the power spectrum for upcoming PIXIE-, STARFIRE-, EXCLAIM-, CONCERTO-, TIME- and CCAT-p-like surveys, as well as possible future intensity mapping observations with the ALMA facility.Comment: 10 pages, 9 figures, 2 tables; version accepted for publication in MNRA

    Cosmology of Axions and Moduli: A Dynamical Systems Approach

    Full text link
    This paper is concerned with string cosmology and the dynamics of multiple scalar fields in potentials that can become negative, and their features as (Early) Dark Energy models. Our point of departure is the "String Axiverse", a scenario that motivates the existence of cosmologically light axion fields as a generic consequence of string theory. We couple such an axion to its corresponding modulus. We give a detailed presentation of the rich cosmology of such a model, ranging from the setting of initial conditions on the fields during inflation, to the asymptotic future. We present some simplifying assumptions based on the fixing of the axion decay constant faf_a, and on the effective field theory when the modulus trajectory is adiabatic, and find the conditions under which these assumptions break down. As a by-product of our analysis, we find that relaxing the assumption of fixed faf_a leads to the appearance of a new meta-stable de-Sitter region for the modulus without the need for uplifting by an additional constant. A dynamical systems analysis reveals the existence of many fixed point attractors, repellers and saddle points, which we analyse in detail. We also provide geometric interpretations of the phase space. The fixed points can be used to bound the couplings in the model. A systematic scan of certain regions of parameter space reveals that the future evolution of the universe in this model can be rich, containing multiple epochs of accelerated expansion.Comment: 27 pages, 12 figures, comments welcome, v2 minor correction

    SPIFI: a Direct-Detection Imaging Spectrometer for Submillimeter Wavelengths

    Get PDF
    The South Pole Imaging Fabry-Perot Interferometer (SPIFI) is the first instrument of its kind -a direct-detection imaging spectrometer for astronomy in the submillimeter band. SPIFI ’s focal plane is a square array of 25 silicon bolometers cooled to 60 mK; the spectrometer consists of two cryogenic scanning Fabry-Perot interferometers in series with a 60-mK bandpass filter. The instrument operates in the short submillimeter windows (350 and 450 μm) available from the ground, with spectral resolving power selectable between 500 and 10,000. At present, SPIFI’s sensitivity is within a factor of 1.5-3 of the photon background limit, comparable with the best heterodyne spectrometers. The instrument ’s large bandwidth and mapping capability provide substantial advantages for specific astrophysical projects, including deep extragalactic observations. We present the motivation for and design of SPIFI and its operational characteristics on the telescope

    A progress report on using bolometers cooled by adiabatic demagnetization refrigeration

    Get PDF
    For sensitive detection of astronomical continuum radiation in the 200 micron to 3 mm wavelength range, bolometers are presently the detectors of choice. In order to approach the limits imposed by photon noise in a cryogenically cooled telescope in space, bolometers must be operated at temperatures near 0.1 K. Researchers report progress in building and using bolometers that operate at these temperatures. The most sensitive bolometer had an estimated noise equivalent power (NEP) of 7 x 10(exp 017) W Hz(exp -1/2). Researchers also briefly discuss the durability of paramagnetic salts used to cool the bolometers

    Mission Concept for the Single Aperture Far-Infrared (SAFIR) Observatory

    Full text link
    The Single Aperture Far-InfraRed (SAFIR) Observatory's science goals are driven by the fact that the earliest stages of almost all phenomena in the universe are shrouded in absorption by and emission from cool dust and gas that emits strongly in the far-infrared and submillimeter. Over the past several years, there has been an increasing recognition of the critical importance of this spectral region to addressing fundamental astrophysical problems, ranging from cosmological questions to understanding how our own Solar System came into being. The development of large, far-infrared telescopes in space has become more feasible with the combination of developments for the James Webb Space Telescope and of enabling breakthroughs in detector technology. We have developed a preliminary but comprehensive mission concept for SAFIR, as a 10 m-class far-infrared and submillimeter observatory that would begin development later in this decade to meet the needs outlined above. Its operating temperature (<4K) and instrument complement would be optimized to reach the natural sky confusion limit in the far-infrared with diffraction-limited peformance down to at least 40 microns. This would provide a point source sensitivity improvement of several orders of magnitude over that of Spitzer or Herschel, with finer angular resolution, enabling imaging and spectroscopic studies of individual galaxies in the early universe. We have considered many aspects of the SAFIR mission, including the telescope technology, detector needs and technologies, cooling method and required technology developments, attitude and pointing, power systems, launch vehicle, and mission operations. The most challenging requirements for this mission are operating temperature and aperture size of the telescope, and the development of detector arrays.Comment: 36 page

    A new era of wide-field submillimetre imaging: on-sky performance of SCUBA-2

    Full text link
    SCUBA-2 is the largest submillimetre wide-field bolometric camera ever built. This 43 square arc-minute field-of-view instrument operates at two wavelengths (850 and 450 microns) and has been installed on the James Clerk Maxwell Telescope on Mauna Kea, Hawaii. SCUBA-2 has been successfully commissioned and operational for general science since October 2011. This paper presents an overview of the on-sky performance of the instrument during and since commissioning in mid-2011. The on-sky noise characteristics and NEPs of the 450 and 850 micron arrays, with average yields of approximately 3400 bolometers at each wavelength, will be shown. The observing modes of the instrument and the on-sky calibration techniques are described. The culmination of these efforts has resulted in a scientifically powerful mapping camera with sensitivities that allow a square degree of sky to be mapped to 10 mJy/beam rms at 850 micron in 2 hours and 60 mJy/beam rms at 450 micron in 5 hours in the best weather.Comment: 18 pages, 15 figures.SPIE Conference series 8452, Millimetre, Submillimetre and Far-infrared Detectors and Instrumentation for Astronomy VI 201
    corecore