77,971 research outputs found
High-resolution UV spectrum of the benzene—N2 van der Waals complex
The rotationally resolved spectrum of the 610 band of the S1 ← S0 electronic transition of the benzene—N2 van der Waals complex has been recorded and 119 transitions assigned. The C6H6·N2 complex, produced in a pulsed molecular beam, was detected by mass-selected two-photon two-colour ionization employing a high-resolution (ΔνUV = 100 MHz, fwhm) pulsed-amplified cw laser for the resonant intermediate excitation. The observed rotational structure is that of a rigid symmetric top with weaker additional rotational transitions most likely arising from the free internal rotation of the N2 in the plane parallel to the benzene ring. The N2 is located parallel to the benzene ring at a distance of 3.50 Å; this decreases by 45 mÅ in the excited electronic state
Temperature determination of shock layer using spectroscopic techniques
Shock layer temperature profiles are obtained through analysis of radiation from shock layers produced by a blunt body inserted in an arc jet flow. Spectral measurements of N2(+) have been made at 0.5 inch, 1.0 inch, and 1.4 inches from the blunt body. A technique is developed to measure the vibrational and rotational temperatures of N2(+). Temperature profiles from the radiation layers show a high temperature near the shock front and decreasing temperature near the boundary layer. Precise temperature measurements could not be made using this technique due to the limited resolution. Use of a high resolution grating will help to make a more accurate temperature determination. Laser induced fluorescence technique is much better since it gives the scope for selective excitation and a better spacial resolution
Velocity-selective direct frequency-comb spectroscopy of atomic vapors
We present an experimental and theoretical investigation of two-photon direct
frequency-comb spectroscopy performed through velocity-selective excitation. In
particular, we explore the effect of repetition rate on the
two-photon transitions
excited in a rubidium atomic vapor cell. The transitions occur via step-wise
excitation through the states by use of the direct
output of an optical frequency comb. Experiments were performed with two
different frequency combs, one with a repetition rate of MHz and
one with a repetition rate of MHz. The experimental spectra are
compared to each other and to a theoretical model.Comment: 10 pages, 7 figure
Research and investigation of gas dynamic lasers
Chemical mixing laser investigations were conducted (1) to investigate the properties of a bimolecular exchange laser system pumped by the H + Cl2 yields HCl(v) + Cl reaction, initiated by arc-dissociated H2, with lasing occurring between wavelengths of 3.4 and 4.0 microns, and (2) to establish the feasibility of an atom recombination-transfer laser employing recombination of arc-dissociated nitrogen with subsequent transfer of vibrational energy to CO2 for lasing at 10.6 microns. One-dimensional analytical results indicate higher results should be obtained with up to v = 3 to 2 transitions participating. Diagnostic and analytical results show that the reaction mechanism during mixing, a back reaction of HCl(v) with H atoms, reaction of Cl with H2(v), moderately fast V-V, V-T processes, and possible HCl(o) initial contaminant level may explain the low performance. N2-CO2 thermal mixing laser studies were extended to measure the efficiency of transfer of recombination energy in such a nonequilibrium N2 source to 10.6 microns optical energy. The low level of efficiency suggests that V-T decay processes may prevent vibrational energy freezing until much lower temperatures are achieved and that trapping of energy in long-lived electronic excitation of N2 may be a factor
Seeded excitation avalanches in off-resonantly driven Rydberg gases
We report an experimental investigation of the facilitated excitation
dynamics in off-resonantly driven Rydberg gases by separating the initial
off-resonant excitation phase from the facilitation phase, in which successive
facilitation events lead to excitation avalanches. We achieve this by creating
a controlled number of initial seed excitations. Greater insight into the
avalanche mechanism is obtained from an analysis of the full counting
distributions. We also present simple mathematical models and numerical
simulations of the excitation avalanches that agree well with our experimental
results.Comment: 13 pages, 6 figure
Three photon absorption in ZnO and ZnS crystals
We report a systematic investigation of both three-photon absorption
(3PA)spectra and wavelength dispersions of Kerr-type nonlinear refraction in
wide-gap semiconductors. The Z-scan measurements are recorded for both ZnO and
ZnS with femtosecond laser pulses. While the wavelength dispersions of the Kerr
nonlinearity are in agreement with a two-band model, the wavelength dependences
of the 3PA are found to be given by (3Ephoton/Eg-1)5/2(3Ephoton/Eg)-9. We also
evaluate higher-order nonlinear optical effects including the fifth-order
instantaneous nonlinear refraction associated with virtual three-photon
transitions, and effectively seventh-order nonlinear processes induced by
three-photon-excited free charge carriers. These higher-order nonlinear effects
are insignificant with laser excitation irradiances up to 40 GW/cm2. Both
pump-probe measurements and three-photon figures of merits demonstrate that ZnO
and ZnS should be a promising candidate for optical switching applications at
telecommunication wavelengths.Comment: 13 pages, 7 figure
Near-threshold high-order harmonic spectroscopy with aligned molecules
We study high-order harmonic generation in aligned molecules close to the
ionization threshold. Two distinct contributions to the harmonic signal are
observed, which show very different responses to molecular alignment and
ellipticity of the driving field. We perform a classical electron trajectory
analysis, taking into account the significant influence of the Coulomb
potential on the strong-field-driven electron dynamics. The two contributions
are related to primary ionization and excitation processes, offering a deeper
understanding of the origin of high harmonics near the ionization threshold.
This work shows that high harmonic spectroscopy can be extended to the
near-threshold spectral range, which is in general spectroscopically rich.Comment: 4 pages, 4 figure
Interference of Spontaneous Emission of Light from two Solid-State Atomic Ensembles
We report an interference experiment of spontaneous emission of light from
two distant solid-state ensembles of atoms that are coherently excited by a
short laser pulse. The ensembles are Erbium ions doped into two LiNbO3 crystals
with channel waveguides, which are placed in the two arms of a Mach-Zehnder
interferometer. The light that is spontaneously emitted after the excitation
pulse shows first-order interference. By a strong collective enhancement of the
emission, the atoms behave as ideal two-level quantum systems and no which-path
information is left in the atomic ensembles after emission of a photon. This
results in a high fringe visibility of 95%, which implies that the observed
spontaneous emission is highly coherent
- …
