4 research outputs found

    Constrained multi-task learning for automated essay scoring

    Get PDF
    Supervised machine learning models for automated essay scoring (AES) usually require substantial task-specific training data in order to make accurate predictions for a particular writing task. This limitation hinders their utility, and consequently their deployment in real-world settings. In this paper, we overcome this shortcoming using a constrained multi-task pairwisepreference learning approach that enables the data from multiple tasks to be combined effectively. Furthermore, contrary to some recent research, we show that high performance AES systems can be built with little or no task-specific training data. We perform a detailed study of our approach on a publicly available dataset in scenarios where we have varying amounts of task-specific training data and in scenarios where the number of tasks increases.This is the author accepted manuscript. The final version is available from Association for Computational Linguistics at http://acl2016.org/index.php?article_id=71

    Online Multi-User Adaptive Statistical Machine Translation

    Get PDF
    In this paper we investigate the problem of adapting a machine translation system to the feedback provided by multiple post-editors. It is well know that translators might have very different post-editing styles and that this variability hinders the application of online learning methods, which indeed assume a homogeneous source of adaptation data. We hence propose multi-task learning to leverage bias information from each single post-editors in order to constrain the evolution of the SMT system. A new framework for significance testing with sentence level metrics is described which shows that Multi-Task learning approaches outperforms existing online learning approaches, with significant gains of 1.24 and 1.88 TER score over a strong online adaptive baseline, on a test set of post-edits produced by four translators texts and on a popular benchmark with multiple references, respectively

    N-best reranking by multitask learning

    No full text
    Abstract We propose a new framework for N-best reranking on sparse feature sets. The idea is to reformulate the reranking problem as a Multitask Learning problem, where each N-best list corresponds to a distinct task. This is motivated by the observation that N-best lists often show significant differences in feature distributions. Training a single reranker directly on this heterogenous data can be difficult. Our proposed meta-algorithm solves this challenge by using multitask learning (such as â„“ 1 /â„“ 2 regularization) to discover common feature representations across Nbest lists. This meta-algorithm is simple to implement, and its modular approach allows one to plug-in different learning algorithms from existing literature. As a proof of concept, we show statistically significant improvements on a machine translation system involving millions of features
    corecore