105,555 research outputs found
Confined Multilamellae Prefer Cylindrical Morphology
By evaporating a drop of lipid dispersion we generate the myelin morphology
often seen in dissolving surfactant powders. We explain these puzzling
nonequilibrium structures using a geometric argument: The bilayer repeat
spacing increases and thus the repulsion between bilayers decreases when a
multilamellar disk is converted into a myelin without gain or loss of material
and with number of bilayers unchanged. Sufficient reduction in bilayer
repulsion can compensate for the cost in curvature energy, leading to a net
stability of the myelin structure. A numerical estimate predicts the degree of
dehydration required to favor myelin structures over flat lamellae.Comment: 6 pages, 3 figures, submitted to Euro. Phys. J.
Nanoscale correlated disorder in out-of-equilibrium myelin ultrastructure
Ultrastructural fluctuations at nanoscale are fundamental to assess
properties and functionalities of advanced out-of-equilibrium materials. We
have taken myelin as a model of supramolecular assembly in out-of-equilibrium
living matter. Myelin sheath is a simple stable multi-lamellar structure of
high relevance and impact in biomedicine. Although it is known that myelin has
a quasi-crystalline ultrastructure there is no information on its fluctuations
at nanoscale in different states due to limitations of the available standard
techniques. To overcome these limitations, we have used Scanning micro X-ray
Diffraction, which is a non-invasive probe of both reciprocal and real space to
visualize statistical fluctuations of myelin order of the sciatic nerve of
Xenopus Laevis. The results show that the ultrastructure period of the myelin
is stabilized by large anti-correlated fluctuations at nanoscale, between
hydrophobic and hydrophilic layers. The ratio between the total thickness of
hydrophilic and hydrophobic layers defines the conformational parameter, which
describes the different states of myelin. Our key result is that myelin in its
out-of-equilibrium functional state fluctuates point-to-point between different
conformations showing a correlated disorder described by a Levy distribution.
As the system approaches the thermodynamic equilibrium in an aged state the
disorder loses its correlation degree and the structural fluctuation
distribution changes to Gaussian. In a denatured state at low pH, it changes to
a completely disordered stage. Our results clarify also the degradation
mechanism in biological systems by associating these states with variation of
the ultrastructural dynamic fluctuations at nanoscale.Comment: 21 pages, 6 fugure
Myelin figures: the buckling and flow of wet soap
Myelin figures are interfacial structures formed when certain surfactants
swell in excess water. Here, I present data and model calculations suggesting
myelin formation and growth is due to the fluid flow of surfactant, driven by
the hydration gradient at the dry surfactant/water interface; a simple model
based on this idea qualitatively reproduces the various myelin growth behaviors
observed in different experiments. From a detailed experimental observation of
how myelins develop from a planar precursor structure, I identify a mechanical
instability that may underlie myelin formation. These results indicate the
mixed mechanical character of the surfactant lamellar structure, where fluid
and elastic properties coexist, is what enables the formation and growth of
myelins.Comment: 11 pages, 10 figures, to appear in Phys. Rev. E. Corrected
figures/typo
MicroRNA-23a promotes myelination in the central nervous system.
Demyelinating disorders including leukodystrophies are devastating conditions that are still in need of better understanding, and both oligodendrocyte differentiation and myelin synthesis pathways are potential avenues for developing treatment. Overexpression of lamin B1 leads to leukodystrophy characterized by demyelination of the central nervous system, and microRNA-23 (miR-23) was found to suppress lamin B1 and enhance oligodendrocyte differentiation in vitro. Here, we demonstrated that miR-23a-overexpressing mice have increased myelin thickness, providing in vivo evidence that miR-23a enhances both oligodendrocyte differentiation and myelin synthesis. Using this mouse model, we explored possible miR-23a targets and revealed that the phosphatase and tensin homologue/phosphatidylinositol trisphosphate kinase/Akt/mammalian target of rapamycin pathway is modulated by miR-23a. Additionally, a long noncoding RNA, 2700046G09Rik, was identified as a miR-23a target and modulates phosphatase and tensin homologue itself in a miR-23a-dependent manner. The data presented here imply a unique role for miR-23a in the coordination of proteins and noncoding RNAs in generating and maintaining healthy myelin
Myelin pathology: Involvement of molecular chaperones and the promise of chaperonotherapy
The process of axon myelination involves various proteins including molecular chaperones. Myelin alteration is a common feature in neurological diseases due to structural and functional abnormalities of one or more myelin proteins. Genetic proteinopathies may occur either in the presence of a normal chaperoning system, which is unable to assist the defective myelin protein in its folding and migration, or due to mutations in chaperone genes, leading to functional defects in assisting myelin maturation/migration. The latter are a subgroup of genetic chaperonopathies causing demyelination. In this brief review, we describe some paradigmatic examples pertaining to the chaperonins Hsp60 (HSPD1, or HSP60, or Cpn60) and CCT (chaperonin-containing TCP-1). Our aim is to make scientists and physicians aware of the possibility and advantages of classifying patients depending on the presence or absence of a chaperonopathy. In turn, this subclassification will allow the development of novel therapeutic strategies (chaperonotherapy) by using molecular chaperones as agents or targets for treatment
On the stability and growth of single myelin figures
Myelin figures are long thin cylindrical structures that typically grow as a
dense tangle when water is added to the concentrated lamellar phase of certain
surfactants. We show that, starting from a well-ordered initial state, single
myelin figures can be produced in isolation thus allowing a detailed study of
their growth and stability. These structures grow with their base at the
exposed edges of bilayer stacks from which material is transported into the
myelin. Myelins only form and grow in the presence of a driving stress; when
the stress is removed, the myelins retract.Comment: 4 pages, 8 figures. Revised version, 1 new figure, additional
reference
Recommended from our members
Temporal and partial inhibition of GLI1 in neural stem cells (NSCs) results in the early maturation of NSC derived oligodendrocytes in vitro.
BackgroundOligodendrocytes are a type of glial cells that synthesize the myelin sheath around the axons and are critical for the nerve conduction in the CNS. Oligodendrocyte death and defects are the leading causes of several myelin disorders such as multiple sclerosis, progressive multifocal leukoencephalopathy, periventricular leukomalacia, and several leukodystrophies. Temporal activation of the Sonic Hedgehog (SHH) pathway is critical for the generation of oligodendrocyte progenitors, and their differentiation and maturation in the brain and spinal cord during embryonic development in mammals.MethodsOur protocol utilized adherent cultures of human induced pluripotent stem cells (iPSC) and human embryonic stem cells (hESCs) with a green fluorescent protein (GFP) reporter knocked into one allele of the OLIG2 gene locus, dual SMAD inhibition, and transient partial inhibition of glioma-associated oncogene 1 (GLI1) by the small molecule GANT61 during the formation of the SOX2/PAX6-positive neural stem cells (NSCs). The SHH pathway was later restimulated by a Smoothened agonist purmorphamine to induce the generation of OLIG2 glial precursors. One hundred ninety-two individual oligodendrocyte precursor cells (OPCs) from GANT61 and control group were analyzed by single-cell RNA sequencing (RNA-Seq).ResultsWe demonstrate here that transient and partial inhibition of the SHH pathway transcription factor GLI1 in NSCs by a small molecule inhibitor GANT61 was found to generate OPCs that were more migratory and could differentiate earlier toward myelin-producing oligodendrocytes. Single-cell transcriptomic analysis (RNA-Seq) showed that GANT61-NSC-derived oligodendrocyte precursor cells (OPCs) had differential activation of some of the genes in the cytoskeleton rearrangement pathways that are involved in OPC motility and induction of maturation. At the protein level, this was also associated with higher levels of myelin-specific genes in the GANT61 group compared to controls. GANT61-NSC-derived OPCs were functional and could generate compact myelin in vitro and in vivo after transplantation in myelin-deficient shiverer mice.ConclusionsThis is a small molecule-based in vitro protocol that leads to the faster generation of functional oligodendrocytes. The development of protocols that lead to efficient and faster differentiation of oligodendrocytes from progenitors provides important advances toward the development of autologous neural stem cell-based therapies using human iPSCs
Studies on cultured Schwann cells: the induction of myelin synthesis, and the control of their proliferation by a new growth factor
We have recently described the use of immunological methods to identify and purify rat Schwann cells. In dissociated cultures of neonatal sciatic nerve, all of the cells can be identified by antigenic criteria as either Schwann cells or fibroblasts. The fibroblasts may be removed by treatment with antiserum to the Thy-1 antigen and complement. The purified Schwann cells have been used to study the regulation of the expression of myelin components, and the stimulation of Schwann cell division by a soluble growth factor. Among the components of myelin, we have concentrated on the peripheral myelin glycoprotein P_0, which constitutes 50–60% of the protein in peripheral myelin. We have studied the distribution of P_0 in vitro and in vivo by immunofluorescence, immuno-autoradiography on SDS gels, and solid-phase radioimmunoassay. Our results support the hypothesis that P_0 is induced specifically as a consequence of the interaction between the Schwann cell and the myelinated type of axon. The level of P_0 in the myelin membrane is at least 1000-fold higher than in the Schwann cell membrane. Purified Schwann cells divide very slowly in a conventional tissue culture medium. This has allowed us to purify a new growth factor from extracts of brain and pituitary, tentatively named Glial Growth Factor (GGF). The activity resides in a basic protein with a native molecular weight of 6 × 10^4 daltons and a subunit molecular weight of 3 × 10^4 daltons, which is active at levels comparable to those of epidermal growth factor. GGF is mitogenic for Schwann cells, astrocytes and muscle fibroblasts
Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy
Impairment of peripheral nerve function is frequent in neurometabolic diseases, but mechanistically not well understood. Here, we report a novel disease mechanism and the finding that glial lipid metabolism is critical for axon function, independent of myelin itself. Surprisingly, nerves of Schwann cell-specific Pex5 mutant mice were unaltered regarding axon numbers, axonal calibers, and myelin sheath thickness by electron microscopy. In search for a molecular mechanism, we revealed enhanced abundance and internodal expression of axonal membrane proteins normally restricted to juxtaparanodal lipid-rafts. Gangliosides were altered and enriched within an expanded lysosomal compartment of paranodal loops. We revealed the same pathological features in a mouse model of human Adrenomyeloneuropathy, preceding disease-onset by one year. Thus, peroxisomal dysfunction causes secondary failure of local lysosomes, thereby impairing the turnover of gangliosides in myelin. This reveals a new aspect of axon-glia interactions, with Schwann cell lipid metabolism regulating the anchorage of juxtaparanodal Kv1-channels
AxonDeepSeg: automatic axon and myelin segmentation from microscopy data using convolutional neural networks
Segmentation of axon and myelin from microscopy images of the nervous system
provides useful quantitative information about the tissue microstructure, such
as axon density and myelin thickness. This could be used for instance to
document cell morphometry across species, or to validate novel non-invasive
quantitative magnetic resonance imaging techniques. Most currently-available
segmentation algorithms are based on standard image processing and usually
require multiple processing steps and/or parameter tuning by the user to adapt
to different modalities. Moreover, only few methods are publicly available. We
introduce AxonDeepSeg, an open-source software that performs axon and myelin
segmentation of microscopic images using deep learning. AxonDeepSeg features:
(i) a convolutional neural network architecture; (ii) an easy training
procedure to generate new models based on manually-labelled data and (iii) two
ready-to-use models trained from scanning electron microscopy (SEM) and
transmission electron microscopy (TEM). Results show high pixel-wise accuracy
across various species: 85% on rat SEM, 81% on human SEM, 95% on mice TEM and
84% on macaque TEM. Segmentation of a full rat spinal cord slice is computed
and morphological metrics are extracted and compared against the literature.
AxonDeepSeg is freely available at https://github.com/neuropoly/axondeepsegComment: 14 pages, 7 figure
- …
