1,443 research outputs found

    Signal design and processing for noise radar

    Get PDF
    An efficient and secure use of the electromagnetic spectrum by different telecommunications and radar systems represents, today, a focal research point, as the coexistence of different radio-frequency sources at the same time and in the same frequency band requires the solution of a non-trivial interference problem. Normally, this is addressed with diversity in frequency, space, time, polarization, or code. In some radar applications, a secure use of the spectrum calls for the design of a set of transmitted waveforms highly resilient to interception and exploitation, i.e., with low probability of intercept/ exploitation capability. In this frame, the noise radar technology (NRT) transmits noise-like waveforms and uses correlation processing of radar echoes for their optimal reception. After a review of the NRT as developed in the last decades, the aim of this paper is to show that NRT can represent a valid solution to the aforesaid problems

    Radar Technology

    Get PDF
    In this book “Radar Technology”, the chapters are divided into four main topic areas: Topic area 1: “Radar Systems” consists of chapters which treat whole radar systems, environment and target functional chain. Topic area 2: “Radar Applications” shows various applications of radar systems, including meteorological radars, ground penetrating radars and glaciology. Topic area 3: “Radar Functional Chain and Signal Processing” describes several aspects of the radar signal processing. From parameter extraction, target detection over tracking and classification technologies. Topic area 4: “Radar Subsystems and Components” consists of design technology of radar subsystem components like antenna design or waveform design

    The Question of Spectrum: Technology, Management, and Regime Change

    Get PDF
    There is general agreement that the traditional command-and-control regulation of radio spectrum by the FCC (and NTIA) has failed. There is no general agreement on which regime should succeed it. Property rights advocates take Ronald Coase's advice that spectrum licenses should be sold off and traded in secondary markets, like any other assets. Commons advocates argue that new technologies cannot be accommodated by a licensing regime (either traditional or property rights) and that a commons regime leads to the most efficient means to deliver useful spectrum to the American public. This article reviews the scholarly history of this controversy, outlines the revolution of FCC thinking, and parses the question of property rights vs. commons into four distinct parts: new technology, spectrum uses, spectrum management, and the overarching legal regime. Advocates on both sides find much to agree about on the first three factors; the disagreement is focused on the choice of overarching regime to most efficiently and effectively make spectrum and its applications available to the American public. There are two feasible regime choices: a property rights regime and a mixed licensed/commons regime subject to regulation. The regime choice depends upon four factors: dispute resolution, transactions costs, tragedies of the commons and anticommons, and flexibility to changing technologies and demands. Each regime is described and analyzed against these four factors. With regard to pure transactions costs, commons may hold an advantage but it appears quite small. For all other factors, the property rights regime holds very substantial advantages relative to the mixed regime. I conclude that the choice comes down to markets vs. regulation as mechanism for allocating resources.

    Radar, Insect Population Ecology, and Pest Management

    Get PDF
    Discussions included: (1) the potential role of radar in insect ecology studies and pest management; (2) the potential role of radar in correlating atmospheric phenomena with insect movement; (3) the present and future radar systems; (4) program objectives required to adapt radar to insect ecology studies and pest management; and (5) the specific action items to achieve the objectives

    Mathematical optimization and game theoretic methods for radar networks

    Get PDF
    Radar systems are undoubtedly included in the hall of the most momentous discoveries of the previous century. Although radars were initially used for ship and aircraft detection, nowadays these systems are used in highly diverse fields, expanding from civil aviation, marine navigation and air-defence to ocean surveillance, meteorology and medicine. Recent advances in signal processing and the constant development of computational capabilities led to radar systems with impressive surveillance and tracking characteristics but on the other hand the continuous growth of distributed networks made them susceptible to multisource interference. This thesis aims at addressing vulnerabilities of modern radar networks and further improving their characteristics through the design of signal processing algorithms and by utilizing convex optimization and game theoretic methods. In particular, the problems of beamforming, power allocation, jammer avoidance and uncertainty within the context of multiple-input multiple-output (MIMO) radar networks are addressed. In order to improve the beamforming performance of phased-array and MIMO radars employing two-dimensional arrays of antennas, a hybrid two-dimensional Phased-MIMO radar with fully overlapped subarrays is proposed. The work considers both adaptive (convex optimization, CAPON beamformer) and non-adaptive (conventional) beamforming techniques. The transmit, receive and overall beampatterns of the Phased-MIMO model are compared with the respective beampatterns of the phased-array and the MIMO schemes, proving that the hybrid model provides superior capabilities in beamforming. By incorporating game theoretic techniques in the radar field, various vulnerabilities and problems can be investigated. Hence, a game theoretic power allocation scheme is proposed and a Nash equilibrium analysis for a multistatic MIMO network is performed. A network of radars is considered, organized into multiple clusters, whose primary objective is to minimize their transmission power, while satisfying a certain detection criterion. Since no communication between the clusters is assumed, non-cooperative game theoretic techniques and convex optimization methods are utilized to tackle the power adaptation problem. During the proof of the existence and the uniqueness of the solution, which is also presented, important contributions on the SINR performance and the transmission power of the radars have been derived. Game theory can also been applied to mitigate jammer interference in a radar network. Hence, a competitive power allocation problem for a MIMO radar system in the presence of multiple jammers is investigated. The main objective of the radar network is to minimize the total power emitted by the radars while achieving a specific detection criterion for each of the targets-jammers, while the intelligent jammers have the ability to observe the radar transmission power and consequently decide its jamming power to maximize the interference to the radar system. In this context, convex optimization methods, noncooperative game theoretic techniques and hypothesis testing are incorporated to identify the jammers and to determine the optimal power allocation. Furthermore, a proof of the existence and the uniqueness of the solution is presented. Apart from resource allocation applications, game theory can also address distributed beamforming problems. More specifically, a distributed beamforming and power allocation technique for a radar system in the presence of multiple targets is considered. The primary goal of each radar is to minimize its transmission power while attaining an optimal beamforming strategy and satisfying a certain detection criterion for each of the targets. Initially, a strategic noncooperative game (SNG) is used, where there is no communication between the various radars of the system. Subsequently, a more coordinated game theoretic approach incorporating a pricing mechanism is adopted. Furthermore, a Stackelberg game is formulated by adding a surveillance radar to the system model, which will play the role of the leader, and thus the remaining radars will be the followers. For each one of these games, a proof of the existence and uniqueness of the solution is presented. In the aforementioned game theoretic applications, the radars are considered to know the exact radar cross section (RCS) parameters of the targets and thus the exact channel gains of all players, which may not be feasible in a real system. Therefore, in the last part of this thesis, uncertainty regarding the channel gains among the radars and the targets is introduced, which originates from the RCS fluctuations of the targets. Bayesian game theory provides a framework to address such problems of incomplete information. Hence, a Bayesian game is proposed, where each radar egotistically maximizes its SINR, under a predefined power constraint

    General use of UAS in EW environment--EW concepts and tactics for single or multiple UAS over the net-centric battlefield

    Get PDF
    With the development of technology, Electronic Warfare has been increasing for decades its importance in modern battles. It can even be referred to as the heart of today's net-centric battlefield. Unmanned Aerial Systems are gaining more importance every single day. Nations are working on more complex and more effective UAS in order to accomplish missions that are very difficult, or even impossible for manned aircraft. Electronic Warfare missions are often dangerous and risky. Mounting Electronic Warfare equipment on a UAS and using it to conduct the EW mission is the most rational solution, since it does not endanger human life. This thesis will examine the possible ways in which UAS can be paired with EW equipment. These two technologies can be integrated into a single mission over the net-centric battlefield. Furthermore, this thesis will try to explain the concepts and tactics required to use these integrated technologies more effectively. At the end of the thesis, a scenario will be run to help the reader understand the applicability of these tactics in the real environment.http://archive.org/details/generaluseofuasi109454512Turkish Air Force author.Approved for public release; distribution is unlimited

    NASA oceanic processes program

    Get PDF
    Current flight projects and definition studies, brief descriptions of individual research activities, and bibliography of referred journal articles are provided

    Remote Sensing of the Oceans

    Get PDF
    This book covers different topics in the framework of remote sensing of the oceans. Latest research advancements and brand-new studies are presented that address the exploitation of remote sensing instruments and simulation tools to improve the understanding of ocean processes and enable cutting-edge applications with the aim of preserving the ocean environment and supporting the blue economy. Hence, this book provides a reference framework for state-of-the-art remote sensing methods that deal with the generation of added-value products and the geophysical information retrieval in related fields, including: Oil spill detection and discrimination; Analysis of tropical cyclones and sea echoes; Shoreline and aquaculture area extraction; Monitoring coastal marine litter and moving vessels; Processing of SAR, HF radar and UAV measurements

    Proposed ontology for cognitive radar systems

    Get PDF
    Cognitive radar is a rapidly developing area of research with many opportunities for innovation. A significant obstacle to development in this discipline is the absence of a common understanding of what constitutes a cognitive radar. The proposition in this study is that radar systems should not be classed as cognitive, or not cognitive, but should be graded by the degree of cognition exhibited. The authors introduce a new taxonomy framework for cognitive radar against which research, experimental and production systems can be benchmarked, enabling clear communication regarding the level of cognition being discussed
    • …
    corecore