4 research outputs found

    Mutation Testing as a Safety Net for Test Code Refactoring

    Full text link
    Refactoring is an activity that improves the internal structure of the code without altering its external behavior. When performed on the production code, the tests can be used to verify that the external behavior of the production code is preserved. However, when the refactoring is performed on test code, there is no safety net that assures that the external behavior of the test code is preserved. In this paper, we propose to adopt mutation testing as a means to verify if the behavior of the test code is preserved after refactoring. Moreover, we also show how this approach can be used to identify the part of the test code which is improperly refactored

    Evaluating Random Mutant Selection at Class-Level in Projects with Non-Adequate Test Suites

    Full text link
    Mutation testing is a standard technique to evaluate the quality of a test suite. Due to its computationally intensive nature, many approaches have been proposed to make this technique feasible in real case scenarios. Among these approaches, uniform random mutant selection has been demonstrated to be simple and promising. However, works on this area analyze mutant samples at project level mainly on projects with adequate test suites. In this paper, we fill this lack of empirical validation by analyzing random mutant selection at class level on projects with non-adequate test suites. First, we show that uniform random mutant selection underachieves the expected results. Then, we propose a new approach named weighted random mutant selection which generates more representative mutant samples. Finally, we show that representative mutant samples are larger for projects with high test adequacy.Comment: EASE 2016, Article 11 , 10 page

    A Model to Estimate First-Order Mutation Coverage from Higher-Order Mutation Coverage

    Full text link
    The test suite is essential for fault detection during software development. First-order mutation coverage is an accurate metric to quantify the quality of the test suite. However, it is computationally expensive. Hence, the adoption of this metric is limited. In this study, we address this issue by proposing a realistic model able to estimate first-order mutation coverage using only higher-order mutation coverage. Our study shows how the estimation evolves along with the order of mutation. We validate the model with an empirical study based on 17 open-source projects.Comment: 2016 IEEE International Conference on Software Quality, Reliability, and Security. 9 page

    Do Null-Type Mutation Operators Help Prevent Null-Type Faults?

    Full text link
    The null-type is a major source of faults in Java programs, and its overuse has a severe impact on software maintenance. Unfortunately traditional mutation testing operators do not cover null-type faults by default, hence cannot be used as a preventive measure. We address this problem by designing four new mutation operators which model null-type faults explicitly. We show how these mutation operators are capable of revealing the missing tests, and we demonstrate that these mutation operators are useful in practice. For the latter, we analyze the test suites of 15 open-source projects to describe the trade-offs related to the adoption of these operators to strengthen the test suite
    corecore