272 research outputs found

    Noise Reduction in EEG Signals using Convolutional Autoencoding Techniques

    Get PDF
    The presence of noise in electroencephalography (EEG) signals can significantly reduce the accuracy of the analysis of the signal. This study assesses to what extent stacked autoencoders designed using one-dimensional convolutional neural network layers can reduce noise in EEG signals. The EEG signals, obtained from 81 people, were processed by a two-layer one-dimensional convolutional autoencoder (CAE), whom performed 3 independent button pressing tasks. The signal-to-noise ratios (SNRs) of the signals before and after processing were calculated and the distributions of the SNRs were compared. The performance of the model was compared to noise reduction performance of Principal Component Analysis, with 95% explained variance, by comparing the Harrell-Davis decile differences between the SNR distributions of both methods and the raw signal SNR distribution for each task. It was found that the CAE outperformed PCA for the full dataset across all three tasks, however the CAE did not outperform PCA for the person specific datasets in any of the three tasks. The results indicate that CAEs can perform better than PCA for noise reduction in EEG signals, but performance of the model may be training size dependent

    Multi-Resolution Fully Convolutional Neural Networks for Monaural Audio Source Separation

    Get PDF
    In deep neural networks with convolutional layers, each layer typically has fixed-size/single-resolution receptive field (RF). Convolutional layers with a large RF capture global information from the input features, while layers with small RF size capture local details with high resolution from the input features. In this work, we introduce novel deep multi-resolution fully convolutional neural networks (MR-FCNN), where each layer has different RF sizes to extract multi-resolution features that capture the global and local details information from its input features. The proposed MR-FCNN is applied to separate a target audio source from a mixture of many audio sources. Experimental results show that using MR-FCNN improves the performance compared to feedforward deep neural networks (DNNs) and single resolution deep fully convolutional neural networks (FCNNs) on the audio source separation problem.Comment: arXiv admin note: text overlap with arXiv:1703.0801

    An Experimental Analysis of Deep Learning Architectures for Supervised Speech Enhancement

    Get PDF
    Recent speech enhancement research has shown that deep learning techniques are very effective in removing background noise. Many deep neural networks are being proposed, showing promising results for improving overall speech perception. The Deep Multilayer Perceptron, Convolutional Neural Networks, and the Denoising Autoencoder are well-established architectures for speech enhancement; however, choosing between different deep learning models has been mainly empirical. Consequently, a comparative analysis is needed between these three architecture types in order to show the factors affecting their performance. In this paper, this analysis is presented by comparing seven deep learning models that belong to these three categories. The comparison includes evaluating the performance in terms of the overall quality of the output speech using five objective evaluation metrics and a subjective evaluation with 23 listeners; the ability to deal with challenging noise conditions; generalization ability; complexity; and, processing time. Further analysis is then provided while using two different approaches. The first approach investigates how the performance is affected by changing network hyperparameters and the structure of the data, including the Lombard effect. While the second approach interprets the results by visualizing the spectrogram of the output layer of all the investigated models, and the spectrograms of the hidden layers of the convolutional neural network architecture. Finally, a general evaluation is performed for supervised deep learning-based speech enhancement while using SWOC analysis, to discuss the technique’s Strengths, Weaknesses, Opportunities, and Challenges. The results of this paper contribute to the understanding of how different deep neural networks perform the speech enhancement task, highlight the strengths and weaknesses of each architecture, and provide recommendations for achieving better performance. This work facilitates the development of better deep neural networks for speech enhancement in the future

    Listening for Sirens: Locating and Classifying Acoustic Alarms in City Scenes

    Get PDF
    This paper is about alerting acoustic event detection and sound source localisation in an urban scenario. Specifically, we are interested in spotting the presence of horns, and sirens of emergency vehicles. In order to obtain a reliable system able to operate robustly despite the presence of traffic noise, which can be copious, unstructured and unpredictable, we propose to treat the spectrograms of incoming stereo signals as images, and apply semantic segmentation, based on a Unet architecture, to extract the target sound from the background noise. In a multi-task learning scheme, together with signal denoising, we perform acoustic event classification to identify the nature of the alerting sound. Lastly, we use the denoised signals to localise the acoustic source on the horizon plane, by regressing the direction of arrival of the sound through a CNN architecture. Our experimental evaluation shows an average classification rate of 94%, and a median absolute error on the localisation of 7.5{\deg} when operating on audio frames of 0.5s, and of 2.5{\deg} when operating on frames of 2.5s. The system offers excellent performance in particularly challenging scenarios, where the noise level is remarkably high.Comment: 6 pages, 9 figure
    • …
    corecore