2 research outputs found

    Bootstrapping single-channel source separation via unsupervised spatial clustering on stereo mixtures

    Full text link
    Separating an audio scene into isolated sources is a fundamental problem in computer audition, analogous to image segmentation in visual scene analysis. Source separation systems based on deep learning are currently the most successful approaches for solving the underdetermined separation problem, where there are more sources than channels. Traditionally, such systems are trained on sound mixtures where the ground truth decomposition is already known. Since most real-world recordings do not have such a decomposition available, this limits the range of mixtures one can train on, and the range of mixtures the learned models may successfully separate. In this work, we use a simple blind spatial source separation algorithm to generate estimated decompositions of stereo mixtures. These estimates, together with a weighting scheme in the time-frequency domain, based on confidence in the separation quality, are used to train a deep learning model that can be used for single-channel separation, where no source direction information is available. This demonstrates how a simple cue such as the direction of origin of source can be used to bootstrap a model for source separation that can be used in situations where that cue is not available.Comment: 5 pages, 2 figure

    Improving Universal Sound Separation Using Sound Classification

    Full text link
    Deep learning approaches have recently achieved impressive performance on both audio source separation and sound classification. Most audio source separation approaches focus only on separating sources belonging to a restricted domain of source classes, such as speech and music. However, recent work has demonstrated the possibility of "universal sound separation", which aims to separate acoustic sources from an open domain, regardless of their class. In this paper, we utilize the semantic information learned by sound classifier networks trained on a vast amount of diverse sounds to improve universal sound separation. In particular, we show that semantic embeddings extracted from a sound classifier can be used to condition a separation network, providing it with useful additional information. This approach is especially useful in an iterative setup, where source estimates from an initial separation stage and their corresponding classifier-derived embeddings are fed to a second separation network. By performing a thorough hyperparameter search consisting of over a thousand experiments, we find that classifier embeddings from clean sources provide nearly one dB of SNR gain, and our best iterative models achieve a significant fraction of this oracle performance, establishing a new state-of-the-art for universal sound separation
    corecore