70,606 research outputs found

    Current evidence for treatment with nusinersen for spinal muscular atrophy : a systematic review

    Get PDF
    Recent discovery of nusinersen, an antisense oligonucleotide drug, has provided encouragement for improving treatment of spinal muscular atrophy. No therapeutic options currently exist for this autosomal recessive motor neuron disorder. Nusinersen is developed for intrathecal use and binds to a specific sequence within the survival motor neuron 2 pre-messenger RNA, modifying the splicing process to promote expression of full-length survival motor neuron protein. We performed a MEDLINE and CENTRAL search to investigate the current evidence for treatment with nusinersen in patients with spinal muscular atrophy. Four papers were withheld, including two phase-3 randomized controlled trials, one phase-2 open-label clinical trial and one phase-1 open-label clinical trial. Outcome measures concerned improvement in motor function and milestones, as well as event-free survival and survival. Results of these trials are hopeful with significant and clinically meaningful improvement due to treatment with intrathecal nusinersen in patients with early- and later-onset spinal muscular atrophy, although this does not restore age-appropriate function. Intrathecal nusinersen has acceptable safety and tolerability. Further trials regarding long-term effects and safety aspects as well as trials including broader spinal muscular atrophy and age categories are required and ongoing

    UBA1/GARS-dependent pathways drive sensory-motor connectivity defects in spinal muscular atrophy

    Get PDF
    Deafferentation of motor neurons as a result of defective sensory-motor connectivity is a critical early event in the pathogenesis of spinal muscular atrophy, but the underlying molecular pathways remain unknown. We show that restoration of ubiquitin-like modifier-activating enzyme 1 (UBA1) was sufficient to correct sensory-motor connectivity in the spinal cord of mice with spinal muscular atrophy. Aminoacyl-tRNA synthetases, including GARS, were identified as downstream targets of UBA1. Regulation of GARS by UBA1 occurred via a non-canonical pathway independent of ubiquitylation. Dysregulation of UBA1/GARS pathways in spinal muscular atrophy mice disrupted sensory neuron fate, phenocopying GARS-dependent defects associated with Charcot-Marie-Tooth disease. Sensory neuron fate was corrected following restoration of UBA1 expression and UBA1/GARS pathways in spinal muscular atrophy mice. We conclude that defective sensory motor connectivity in spinal muscular atrophy results from perturbations in a UBA1/GARS pathway that modulates sensory neuron fate, thereby highlighting significant molecular and phenotypic overlap between spinal muscular atrophy and Charcot-Marie-Tooth disease.</p

    Further supporting evidence for REEP1 phenotypic and allelic heterogeneity.

    Get PDF
    Heterozygous mutations in REEP1 (MIM #609139) encoding the receptor expression-enhancing protein 1 (REEP1) are a well-recognized and relatively frequent cause of autosomal dominant hereditary spastic paraplegia (HSP), SPG31.1 REEP1 localizes in the mitochondria and endoplasmic reticulum (ER) and facilitates ER-mitochondria interactions.2 In addition to the HSP phenotype, REEP1 has been associated with an autosomal dominant spinal type of Charcot-Marie-Tooth disease in 2 families.3 More recently, a patient with homozygous REEP1 mutation with a much more severe phenotype akin to spinal muscular atrophy with respiratory distress type 1 (SMARD1) was reported.4 In this report, we present a patient with a homozygous mutation in REEP1 manifesting a severe congenital distal spinal muscular atrophy (SMA) with diaphragmatic paralysis, expanding the phenotype from mild autosomal dominant HSP through to severe recessive distal SMA pattern

    Spinal Muscular Atrophy

    Get PDF
    Introdução: A Atrofia Muscular Espinhal (AME) é o nome dado a uma doença neuromuscular específica caracterizada pela degeneração dos neurónios motores medulares, condicionando atrofia e fraqueza muscular progressivas. É determinada pela alteração do gene Survival Motor Neuron-1 (SMN1), localizado no braço longo do cromossoma cinco. Uma cópia quase idêntica do gene SMN1, chamada SMN2, modula a gravidade da doença. A AME repercute-se a nível de vários órgãos e sistemas, envolvendo frequentemente os sistemas respiratório, osteoarticular e gastrintestinal. Estão descritos vários subtipos da doença, com base quer na idade do início dos sintomas quer na máxima aquisição motora alcançada. Objectivos: Estudar a população de doentes com o diagnóstico de AME (clínico e/ou genético) seguida na Consulta de Medicina Física e de Reabilitação (CMFR) do Hospital de Dona Estefânia (HDE) em Lisboa, no período de Janeiro de 2007 a Outubro de 2009. Métodos: Estudo retrospectivo com análise de parâmetros sócio-demográficos, clínica, exames complementares de diagnóstico, evolução e complicações da doença. Resultados e Discussão: A casuística é constituída por doze doentes, com idades compreendidas entre os 0 meses e os 21 anos de idade, tendo sete o diagnóstico de AME I, um AME II equatro o diagnóstico de AME tipo III. Verificou-se que a gravidade da doença era inversamente proporcional à idade no início dos sintomas e à função motora máxima atingida pelo indivíduo durante o seu desenvolvimento. Todos os doentes apresentaram infecções respiratórias recorrentes e nos óbitos ocorridos, verificou-se como causa de morte a insuficiência respiratória, complicada de paragem cardio-respiratória. As principais complicações ortopédicas foram o desenvolvimento de contracturas articulares das grandes articulações dos membros inferiores, bem como o desenvolvimento de escoliose. A disfagia foi a principal complicação gastrenterológica. Conclusão: A não aquisição de etapas do desenvolvimento motor está correlacionada com um agravamento do prognóstico funcional e vital

    Gigantic Stomach: A Rare Manifestation of Duchenne Muscular Dystrophy

    Get PDF
    Duchenne muscular dystrophy (DMD) is characterized by degeneration and atrophy of skeletal, cardiac, and smooth muscles after a latent period of apparently normal development and function. The gastrointestinal manifestations start in the second decade of life and are mainly due to atrophy of smooth muscle layers. Refractory gastroparesis and chronic constipation can lead to severe gastric and small bowel dilatation, which can be life threatening. Here, we present a case of a 21-year-old male with a gigantic stomach secondary to DMD resolved with conservative management and no surgical intervention

    Clinical and molecular features and therapeutic perspectives of spinal muscular atrophy with respiratory distress type 1

    Get PDF
    Spinal muscular atrophy with respiratory distress (SMARD1) is an autosomal recessive neuromuscular disease caused by mutations in the IGHMBP2 gene, encoding the immunoglobulin μ-binding protein 2, leading to motor neuron degeneration. It is a rare and fatal disease with an early onset in infancy in the majority of the cases. The main clinical features are muscular atrophy and diaphragmatic palsy, which requires prompt and permanent supportive ventilation. The human disease is recapitulated in the neuromuscular degeneration (nmd) mouse. No effective treatment is available yet, but novel therapeutical approaches tested on the nmd mouse, such as the use of neurotrophic factors and stem cell therapy, have shown positive effects. Gene therapy demonstrated effectiveness in SMA, being now at the stage of clinical trial in patients and therefore representing a possible treatment for SMARD1 as well. The significant advancement in understanding of both SMARD1 clinical spectrum and molecular mechanisms makes ground for a rapid translation of pre-clinical therapeutic strategies in humans

    An autopsy study of a familial oculopharyngeal muscular dystrophy (OPMD) with distal spread and neurogenic involvement

    Get PDF
    An 81-year-old man from a family with a history of oculopharyngeal muscular dystrophy (OPMD) involving 6 members over 4 generations is described. The patient first noted drooping of his eyelids at the age of 65. Dysphagia and dysarthria occurred soon thereafter. At age 78, impairment of gait developed and progressive wasting occurred in the limbs with an initial distal distribution. Electromyography of several limb muscles displayed a mixed myopathic and neurogenic pattern with giant potentials. Examination at autopsy revealed slight loss of neurons in the anterior horns of the spinal cord, with scanty ghost cells, neuronophagia, and central chromatolysis. By light microscopy the limb muscles showed moderate small-group atrophy with severe myopathy and target fibers. The viscerocranial muscles, including the ocular, vocal, and tongue muscles, demonstrated only myopathic change with the typical features of progressive muscular dystrophy. Advanced replacement by fibrous connective tissue and fat had occurred in both the viscerocranial and the lower limb muscles. The significance of neurogenic involvement in OPMD is discussed

    Abnormal motoneuron migration, differentiation, and axon outgrowth in spinal muscular atrophy

    Get PDF
    The role of heterotopic (migratory) motoneurons (HMN) in the pathogenesis of spinal muscular atrophy (SMA) is still controversial. We examined the occurrence and amount of HMN in spinal cord tissue from eight children with SMA (six with SMA-I and two with SMA-II). All affected subjects were carrying a homozygous deletion of exon 7 in the SMN1 gene. Unlike controls, virtually free from HMN, all SMA subjects showed a significant number of HMN at all levels of the spinal cord. Heterotopic neurons were hyperchromatic, located mostly in the ventral white matter and had no axon or dendrites. More than half of the HMN were very undifferentiated, as judged from their lack of immunoreactivity for NeuN and MAP2 proteins. Small numbers of more differentiated heterotopic neurons were also found in the dorsal and lateral white matter region. As confirmed by ultrastructural analysis, in situ end labeling (ISEL) and CD68 immunoreactivity, HMN in the ventral outflow were found to have no synapses, to activate microglial cells, and to eventually die by necrosis. An unbiased quantitative analysis showed a significant negative correlation between age of SMA subjects (a reflection of the clinical severity) and the number of HMN. Subjects who died at older ages had increased number of GFAP-positive astrocytes. Complementing our previous report on motoneuron apoptosis within the ventral horns in SMA, we now propose that abnormal migration, differentiation, and lack of axonal outgrowth may induce motoneuron apoptosis predominantly during early stages, whereas a slower necrosis-like cell death of displaced motoneurons which "escaped" apoptosis characterizes later stages of SMA

    Treatment algorithm for infants diagnosed with spinal muscular atrophy through newborn screening

    Get PDF
    Spinal muscular atrophy (SMA) is an autosomal recessive disease characterized by the degeneration of alpha motor neurons in the spinal cord, leading to muscular atrophy. SMA is caused by deletions or mutations in the survival motor neuron 1 gene (SMN1). In humans, a nearly identical copy gene, SMN2, is present. Because SMN2 has been shown to decrease disease severity in a dose-dependent manner, SMN2 copy number is predictive of disease severity. To develop a treatment algorithm for SMA-positive infants identified through newborn screening based upon SMN2 copy number. A working group comprised of 15 SMA experts participated in a modified Delphi process, moderated by a neutral third-party expert, to develop treatment guidelines. The overarching recommendation is that all infants with two or three copies of SMN2 should receive immediate treatment (n = 13). For those infants in which immediate treatment is not recommended, guidelines were developed that outline the timing and appropriate screens and tests to be used to determine the timing of treatment initiation. The identification SMA affected infants via newborn screening presents an unprecedented opportunity for achievement of maximal therapeutic benefit through the administration of treatment pre-symptomatically. The recommendations provided here are intended to help formulate treatment guidelines for infants who test positive during the newborn screening process

    Aberrant Autophagic Response in The Muscle of A Knock-in Mouse Model of Spinal and Bulbar Muscular Atrophy

    Get PDF
    Spinal and bulbar muscular atrophy (SBMA) is characterized by loss of motoneurons and sensory neurons, accompanied by atrophy of muscle cells. SBMA is due to an androgen receptor containing a polyglutamine tract (ARpolyQ) that misfolds and aggregates, thereby perturbing the protein quality control (PQC) system. Using SBMA AR113Q mice we analyzed proteotoxic stress-induced alterations of HSPB8-mediated PQC machinery promoting clearance of misfolded proteins by autophagy. In muscle of symptomatic AR113Q male mice, we found expression upregulation of Pax-7, myogenin, E2-ubiquitin ligase UBE2Q1 and acetylcholine receptor (AchR), but not of MyoD, and of two E3-ligases (MuRF-1 and Cullin3). TGF beta 1 and PGC-1 alpha were also robustly upregulated. We also found a dramatic perturbation of the autophagic response, with upregulation of most autophagic markers (Beclin-1, ATG10, p62/SQSTM1, LC3) and of the HSPB8-mediated PQC response. Both HSPB8 and its co-chaperone BAG3 were robustly upregulated together with other specific HSPB8 interactors (HSPB2 and HSPB3). Notably, the BAG3: BAG1 ratio increased in muscle suggesting preferential misfolded proteins routing to autophagy rather than to proteasome. Thus, mutant ARpolyQ induces a potent autophagic response in muscle cells. Alteration in HSPB8-based PQC machinery may represent muscle-specific biomarkers useful to assess SBMA progression in mice and patients in response to pharmacological treatments
    corecore