548,716 research outputs found
The association between muscle strength and activity limitations in patients with the hypermobility type of Ehlers–Danlos syndrome : the impact of proprioception
Purpose: The patients diagnosed with Ehlers-Danlos Syndrome Hypermobility Type (EDS-HT) are characterized by pain, proprioceptive inacuity, muscle weakness, potentially leading to activity limitations. In EDS-HT, a direct relationship between muscle strength, proprioception and activity limitations has never been studied. The objective of the study was to establish the association between muscle strength and activity limitations and the impact of proprioception on this association in EDS-HT patients.
Methods: Twenty-four EDS-HT patients were compared with 24 controls. Activity limitations were quantified by Health Assessment Questionnaire (HAQ), Six-Minute Walk test (6MWT) and 30-s chair-rise test (30CRT). Muscle strength was quantified by handheld dynamometry. Proprioception was quantified by movement detection paradigm. In analyses, the association between muscle strength and activity limitations was controlled for proprioception and confounders.
Results: Muscle strength was associated with 30CRT (r = 0.67, p = <0.001), 6MWT (r = 0.58, p = <0.001) and HAQ (r = 0.63, p = <0.001). Proprioception was associated with 30CRT (r = 0.55, p <0.001), 6MWT (r = 0.40, p = <0.05) and HAQ (r = 0.46, p < 0.05). Muscle strength was found to be associated with activity limitations, however, proprioceptive inacuity confounded this association.
Conclusions: Muscle strength is associated with activity limitations in EDS-HT patients. Joint proprioception is of influence on this association and should be considered in the development of new treatment strategies for patients with EDS-HT.
Implications for rehabilitation :
Reducing activity limitations by enhancing muscle strength is frequently applied in the treatment of EDS-HT patients. Although evidence regarding treatment efficacy is scarce, the current paper confirms the rationality that muscle strength is an important factor in the occurrence of activity limitations in EDS-HT patients.
Although muscle strength is the most dominant factor that is associated with activity limitations, this association is confounded by proprioception. In contrast to common belief proprioception was not directly associated with activity limitations but confounded this association. Controlling muscle strength on the bases of proprioceptive input may be more important for reducing activity limitations than just enhancing sheer muscle strength
Associations of Muscle Mass and Strength with All-Cause Mortality among US Older Adults
INTRODUCTION:
Recent studies suggested that muscle mass and muscle strength may independently or synergistically affect aging-related health outcomes in older adults; however, prospective data on mortality in the general population are sparse.
METHODS:
We aimed to prospectively examine individual and joint associations of low muscle mass and low muscle strength with all-cause mortality in a nationally representative sample. This study included 4449 participants age 50 yr and older from the National Health and Nutrition Examination Survey 1999 to 2002 with public use 2011 linked mortality files. Weighted multivariable logistic regression models were adjusted for age, sex, race, body mass index (BMI), smoking, alcohol use, education, leisure time physical activity, sedentary time, and comorbid diseases.
RESULTS:
Overall, the prevalence of low muscle mass was 23.1% defined by appendicular lean mass (ALM) and 17.0% defined by ALM/BMI, and the prevalence of low muscle strength was 19.4%. In the joint analyses, all-cause mortality was significantly higher among individuals with low muscle strength, whether they had low muscle mass (odds ratio [OR], 2.03; 95% confidence interval [CI], 1.27-3.24 for ALM; OR, 2.53; 95% CI, 1.64-3.88 for ALM/BMI) or not (OR, 2.66; 95% CI, 1.53-4.62 for ALM; OR, 2.17; 95% CI, 1.29-3.64 for ALM/BMI). In addition, the significant associations between low muscle strength and all-cause mortality persisted across different levels of metabolic syndrome, sedentary time, and LTPA.
CONCLUSIONS:
Low muscle strength was independently associated with elevated risk of all-cause mortality, regardless of muscle mass, metabolic syndrome, sedentary time, or LTPA among US older adults, indicating the importance of muscle strength in predicting aging-related health outcomes in older adults
A review of recent perspectives on biomechanical risk factors associated with anterior cruciate ligament injury
There is considerable evidence to support a number of biomechanical risk factors associated with non-contact anterior cruciate ligament (ACL) injury. This paper aimed to review these biomechanical risk factors and highlight future directions relating to them. Current perspectives investigating trunk position and relationships between strength, muscle activity and biomechanics during landing/cutting highlight the importance of increasing hamstring muscle force during dynamic movements through altering strength, muscle activity, muscle length and contraction velocity. In particular, increased trunk flexion during landing/cutting and greater hamstring strength are likely to increase hamstring muscle force during landing and cutting which have been associated with reduced ACL injury risk. Decision making has also been shown to influence landing biomechanics and should be considered when designing tasks to assess landing/cutting biomechanics. Coaches should therefore promote hamstring strength training and active trunk flexion during landing and cutting in an attempt to reduce ACL injury risk.Peer reviewe
Do the effects of vitamin d supplementation on muscle strength differ according to age?
Introduction: Vitamin D plays an important role in musculoskeletal health and its use improves muscle strength. However, the effect of vitamin D use on muscle strength in women of different ages is yet to be investigated. Therefore, in this study, we aimed to evaluate the effect of vitamin D use on muscle strength in women of different age groups and determine the differences of muscle strength gain between age groups. Materials and Method: Sixty-three women with calcidiol levels<30 ng/mL were randomly assigned and stratified by their age group as follows: Group I (aged 40–49 years), Group II (aged 50–59 years) and Group III (aged 60–69 years). Calcidiol levels, body mass index, fat free mass, percent fat, grip strength, arm curl, chair stand and isokinetic concentric flexor and extensor peak torque and power at 60°•s−1 and 180°•s−1 were assessed at baseline and six months after oral cholecalciferol supplementation. Results: Vitamin D supplementation caused significant improvement in body mass index, arm curl, grip strength and knee flexor and extensor peak torque and power at 60°•s−1 and 180°•s−1 in all groups (p<0.05). Knee flexor power at 60°•s−1 and extensor power at 180°•s−1 were significantly higher in group I than in group III (p<0.025). Conclusion: Muscle strength in response to vitamin D supplementation increased in all age groups, and isokinetic muscle power was the highest in the youngest age group studied. © 2018, Geriatrics Society. All rights reserved
Ultrasound Muscle Assessment and Nutritional Status in Institutionalized Older Adults: A Pilot Study
Muscle thickness, measured by ultrasonography, has been investigated for nutritional
assessment in older adults, however the associations between muscle ultrasound parameters in the
lower limb and nutritional status have not been studied. The aim of this study was to investigate
the relationship between muscle thickness echo intensity (EI), and nutritional status in home care
residents. A cross sectional study was conducted involving 19 older adults from a home care in
Malaga (Spain). We evaluated lower leg muscles by ultrasound, anthropometric data, physical
function (measured by gait speed and the Short Physical Performance Battery), strength (handgrip and
knee extensors strength) and nutritional status across the Mini-Nutritional Assessment Short-Form
(MNA-SF). We found that muscle thickness assessed by ultrasonography independently predicts
nutritional status by MNA-SF and after adjusting for handgrip strength or age and sex. As secondary
findings, we found relations between strength, functional capacity and the MNA-SF test. These
results suggest that lower leg muscle ultrasound parameters could be used as a low-cost objective
method for muscle evaluation in nutritional assessment in older adults
Increased amino acid turnover and myofibrillar protein breakdown in advanced cancer are associated with muscle weakness and impaired physical function
Muscle wasting in cancer negatively affects physical function and quality of life. This study investigates amino acid metabolism and the association with muscle mass and function in patients with cancer.In 16 patients with advanced cancer undergoing chemotherapy and 16 healthy controls, we administered an intravenous pulse and prime of stable amino acid tracers. We took blood samples to measure the Rate of appearance (Ra), whole body production (WBP), clearance (Cl), and post absorptive whole body net protein breakdown (WBnetPB). Plasma amino acid concentrations and enrichments were analysed by LC-MS/MS. We assessed muscle mass, handgrip/leg/respiratory muscle strength and reported physical activity, quality of life, and physical function.Muscle strength was lower in cancer patients than in healthy controls. Total and limb muscle mass, reported physical activity and WBnetPB were comparable. WBP and Cl of tau-methylhistidine, leucine, glutamine and taurine were higher in cancer patients as well as glycine Cl. Amino acid metabolism was correlated with low muscle mass, strength, physical function and quality of life.Myofibrillar protein breakdown and production of amino acids involved in muscle contractility are up regulated in patients with cancer undergoing chemotherapy and related to muscle weakness and reduced physical outcomes
Age-related deficits in skeletal muscle recovery following disuse are associated with neuromuscular junction instability and ER stress, not impaired protein synthesis.
Age-related loss of muscle mass and strength can be accelerated by impaired recovery of muscle mass following a transient atrophic stimulus. The aim of this study was to identify the mechanisms underlying the attenuated recovery of muscle mass and strength in old rats following disuse-induced atrophy. Adult (9 month) and old (29 month) male F344BN rats underwent hindlimb unloading (HU) followed by reloading. HU induced significant atrophy of the hindlimb muscles in both adult (17-38%) and old (8-29%) rats, but only the adult rats exhibited full recovery of muscle mass and strength upon reloading. Upon reloading, total RNA and protein synthesis increased to a similar extent in adult and old muscles. At baseline and upon reloading, however, proteasome-mediated degradation was suppressed leading to an accumulation of ubiquitin-tagged proteins and p62. Further, ER stress, as measured by CHOP expression, was elevated at baseline and upon reloading in old rats. Analysis of mRNA expression revealed increases in HDAC4, Runx1, myogenin, Gadd45a, and the AChRs in old rats, suggesting neuromuscular junction instability/denervation. Collectively, our data suggests that with aging, impaired neuromuscular transmission and deficits in the proteostasis network contribute to defects in muscle fiber remodeling and functional recovery of muscle mass and strength
Serum 25-Hydroxyvitamin D and Intact Parathyroid Hormone Influence Muscle Outcomes in Children and Adolescents
Increases in 25-hydroxyvitamin D concentrations are shown to improve strength in adults; however, data in pediatric populations are scant and equivocal. In this ancillary study of a larger-scale, multi-sited, double-blind, randomized, placebo-controlled vitamin D intervention in US children and adolescents, we examined the associations between changes in vitamin D metabolites and changes in muscle mass, strength, and composition after 12 weeks of vitamin D3 supplementation. Healthy male and female, black and white children and adolescents between the ages of 9 and 13 years from two US states (Georgia 34°N and Indiana 40°N) were enrolled in the study and randomly assigned to receive an oral vitamin D3 dose of 0, 400, 1000, 2000, or 4000 IU/d for 12 weeks between the winter months of 2009 to 2011 (N = 324). Analyses of covariance, partial correlations, and regression analyses of baseline and 12-week changes (post-baseline) in vitamin D metabolites (serum 25(OH)D, 1,25(OH)2 D, intact parathyroid hormone [iPTH]), and outcomes of muscle mass, strength, and composition (total body fat-free soft tissue [FFST], handgrip strength, forearm and calf muscle cross-sectional area [MCSA], muscle density, and intermuscular adipose tissue [IMAT]) were assessed. Serum 25(OH)D and 1,25(OH)2 D, but not iPTH, increased over time, as did fat mass, FFST, forearm and calf MCSA, forearm IMAT, and handgrip strength (p < 0.05). Vitamin D metabolites were not associated with muscle strength at baseline nor after the 12-week intervention. Changes in serum 25(OH)D correlated with decreases in forearm IMAT, whereas changes in serum iPTH predicted increases in forearm and calf MCSA and IMAT (p < 0.05). Overall, increases in 25(OH)D did not influence muscle mass or strength in vitamin D-sufficient children and adolescents; however, the role of iPTH on muscle composition in this population is unknown and warrants further investigation
The effects of inspiratory muscle training in older adults
Purpose: Declining inspiratory muscle function and structure and systemic low-level inflammation and oxidative stress may contribute to morbidity and mortality during normal ageing. Therefore, we examined the effects of inspiratory muscle training (IMT) in older adults on inspiratory muscle function and structure and systemic inflammation and oxidative stress, and re-examined the reported positive effects of IMT on respiratory muscle strength, inspiratory muscle endurance, spirometry, exercise performance, physical activity levels (PAL) and quality of life (QoL). Methods: Thirty-four healthy older adults (68 ± 3 years) with normal spirometry, respiratory muscle strength and physical fitness were divided equally into a pressure-threshold IMT or sham-hypoxic placebo group. Before and after an 8 week intervention, measurements were taken for dynamic inspiratory muscle function and inspiratory muscle endurance using a weighted plunger pressure-threshold loading device, diaphragm thickness using B-mode ultrasonography, plasma cytokine concentrations using immunoassays, DNA damage levels in peripheral blood mononuclear cells (PBMC) using Comet Assays, spirometry, maximal mouth pressures, exercise performance using a six minute walk test, PAL using a questionnaire and accelerometry, and QoL using a questionnaire
- …
