4,711 research outputs found

    Counting derangements and Nash equilibria

    Full text link
    The maximal number of totally mixed Nash equilibria in games of several players equals the number of block derangements, as proved by McKelvey and McLennan.On the other hand, counting the derangements is a well studied problem. The numbers are identified as linearization coefficients for Laguerre polynomials. MacMahon derived a generating function for them as an application of his master theorem. This article relates the algebraic, combinatorial and game-theoretic problems that were not connected before. New recurrence relations, hypergeometric formulas and asymptotics for the derangement counts are derived. An upper bound for the total number of all Nash equilibria is given.Comment: 22 pages, 1 table; Theorem 3.3 adde

    Approximation and geometric modeling with simplex B-splines associated with irregular triangles

    Get PDF
    Bivariate quadratic simplical B-splines defined by their corresponding set of knots derived from a (suboptimal) constrained Delaunay triangulation of the domain are employed to obtain a C1-smooth surface. The generation of triangle vertices is adjusted to the areal distribution of the data in the domain. We emphasize here that the vertices of the triangles initially define the knots of the B-splines and do generally not coincide with the abscissae of the data. Thus, this approach is well suited to process scattered data.\ud \ud With each vertex of a given triangle we associate two additional points which give rise to six configurations of five knots defining six linearly independent bivariate quadratic B-splines supported on the convex hull of the corresponding five knots.\ud \ud If we consider the vertices of the triangulation as threefold knots, the bivariate quadratic B-splines turn into the well known bivariate quadratic Bernstein-Bézier-form polynomials on triangles. Thus we might be led to think of B-splines as of smoothed versions of Bernstein-Bézier polynomials with respect to the entire domain. From the degenerate Bernstein-Bézier situation we deduce rules how to locate the additional points associated with each vertex to establish knot configurations that allow the modeling of discontinuities of the function itself or any of its directional derivatives. We find that four collinear knots out of the set of five defining an individual quadratic B-spline generate a discontinuity in the surface along the line they constitute, and that analogously three collinear knots generate a discontinuity in a first derivative.\ud Finally, the coefficients of the linear combinations of normalized simplicial B-splines are visualized as geometric control points satisfying the convex hull property.\ud Thus, bivariate quadratic B-splines associated with irregular triangles provide a great flexibility to approximate and model fast changing or even functions with any given discontinuities from scattered data.\ud An example for least squares approximation with simplex splines is presented

    Certified Roundoff Error Bounds using Bernstein Expansions and Sparse Krivine-Stengle Representations

    Full text link
    Floating point error is an inevitable drawback of embedded systems implementation. Computing rigorous upper bounds of roundoff errors is absolutely necessary to the validation of critical software. This problem is even more challenging when addressing non-linear programs. In this paper, we propose and compare two new methods based on Bernstein expansions and sparse Krivine-Stengle representations, adapted from the field of the global optimization to compute upper bounds of roundoff errors for programs implementing polynomial functions. We release two related software package FPBern and FPKiSten, and compare them with state of the art tools. We show that these two methods achieve competitive performance, while computing accurate upper bounds by comparison with other tools.Comment: 20 pages, 2 table

    Near-best C2C^2 quartic spline quasi-interpolants on type-6 tetrahedral partitions of bounded domains

    Full text link
    In this paper, we present new quasi-interpolating spline schemes defined on 3D bounded domains, based on trivariate C2C^2 quartic box splines on type-6 tetrahedral partitions and with approximation order four. Such methods can be used for the reconstruction of gridded volume data. More precisely, we propose near-best quasi-interpolants, i.e. with coefficient functionals obtained by imposing the exactness of the quasi-interpolants on the space of polynomials of total degree three and minimizing an upper bound for their infinity norm. In case of bounded domains the main problem consists in the construction of the coefficient functionals associated with boundary generators (i.e. generators with supports not completely inside the domain), so that the functionals involve data points inside or on the boundary of the domain. We give norm and error estimates and we present some numerical tests, illustrating the approximation properties of the proposed quasi-interpolants, and comparisons with other known spline methods. Some applications with real world volume data are also provided.Comment: In the new version of the paper, we have done some minor revisions with respect to the previous version, CALCOLO, Published online: 10 October 201

    Nonparametric statistical inference for drift vector fields of multi-dimensional diffusions

    Full text link
    The problem of determining a periodic Lipschitz vector field b=(b1,,bd)b=(b_1, \dots, b_d) from an observed trajectory of the solution (Xt:0tT)(X_t: 0 \le t \le T) of the multi-dimensional stochastic differential equation \begin{equation*} dX_t = b(X_t)dt + dW_t, \quad t \geq 0, \end{equation*} where WtW_t is a standard dd-dimensional Brownian motion, is considered. Convergence rates of a penalised least squares estimator, which equals the maximum a posteriori (MAP) estimate corresponding to a high-dimensional Gaussian product prior, are derived. These results are deduced from corresponding contraction rates for the associated posterior distributions. The rates obtained are optimal up to log-factors in L2L^2-loss in any dimension, and also for supremum norm loss when d4d \le 4. Further, when d3d \le 3, nonparametric Bernstein-von Mises theorems are proved for the posterior distributions of bb. From this we deduce functional central limit theorems for the implied estimators of the invariant measure μb\mu_b. The limiting Gaussian process distributions have a covariance structure that is asymptotically optimal from an information-theoretic point of view.Comment: 55 pages, to appear in the Annals of Statistic
    corecore