55 research outputs found

    Deep Variational Multivariate Information Bottleneck -- A Framework for Variational Losses

    Full text link
    Variational dimensionality reduction methods are known for their high accuracy, generative abilities, and robustness. We introduce a framework to unify many existing variational methods and design new ones. The framework is based on an interpretation of the multivariate information bottleneck, in which an encoder graph, specifying what information to compress, is traded-off against a decoder graph, specifying a generative model. Using this framework, we rederive existing dimensionality reduction methods including the deep variational information bottleneck and variational auto-encoders. The framework naturally introduces a trade-off parameter extending the deep variational CCA (DVCCA) family of algorithms to beta-DVCCA. We derive a new method, the deep variational symmetric informational bottleneck (DVSIB), which simultaneously compresses two variables to preserve information between their compressed representations. We implement these algorithms and evaluate their ability to produce shared low dimensional latent spaces on Noisy MNIST dataset. We show that algorithms that are better matched to the structure of the data (in our case, beta-DVCCA and DVSIB) produce better latent spaces as measured by classification accuracy, dimensionality of the latent variables, and sample efficiency. We believe that this framework can be used to unify other multi-view representation learning algorithms and to derive and implement novel problem-specific loss functions

    CMIB: unsupervised image object categorization in multiple visual contexts

    Get PDF
    • …
    corecore