9,888 research outputs found

    Solving SAT in linear time with a neural-like membrane system

    Get PDF
    We present in this paper a neural-like membrane system solving the SAT problem in linear time. These neural Psystems are nets of cells working with multisets. Each cell has a finite state memory, processes multisets of symbol-impulses, and can send impulses (?excitations?) to the neighboring cells. The maximal mode of rules application and the replicative mode of communication between cells are at the core of the eficiency of these systems

    Optimization of Tree Modes for Parallel Hash Functions: A Case Study

    Full text link
    This paper focuses on parallel hash functions based on tree modes of operation for an inner Variable-Input-Length function. This inner function can be either a single-block-length (SBL) and prefix-free MD hash function, or a sponge-based hash function. We discuss the various forms of optimality that can be obtained when designing parallel hash functions based on trees where all leaves have the same depth. The first result is a scheme which optimizes the tree topology in order to decrease the running time. Then, without affecting the optimal running time we show that we can slightly change the corresponding tree topology so as to minimize the number of required processors as well. Consequently, the resulting scheme decreases in the first place the running time and in the second place the number of required processors.Comment: Preprint version. Added citations, IEEE Transactions on Computers, 201

    The HyperBagGraph DataEdron: An Enriched Browsing Experience of Multimedia Datasets

    Full text link
    Traditional verbatim browsers give back information in a linear way according to a ranking performed by a search engine that may not be optimal for the surfer. The latter may need to assess the pertinence of the information retrieved, particularly when s\cdothe wants to explore other facets of a multi-facetted information space. For instance, in a multimedia dataset different facets such as keywords, authors, publication category, organisations and figures can be of interest. The facet simultaneous visualisation can help to gain insights on the information retrieved and call for further searches. Facets are co-occurence networks, modeled by HyperBag-Graphs -- families of multisets -- and are in fact linked not only to the publication itself, but to any chosen reference. These references allow to navigate inside the dataset and perform visual queries. We explore here the case of scientific publications based on Arxiv searches.Comment: Extension of the hypergraph framework shortly presented in arXiv:1809.00164 (possible small overlaps); use the theoretical framework of hb-graphs presented in arXiv:1809.0019
    corecore