122,262 research outputs found

    Waveform Relaxation for the Computational Homogenization of Multiscale Magnetoquasistatic Problems

    Full text link
    This paper proposes the application of the waveform relaxation method to the homogenization of multiscale magnetoquasistatic problems. In the monolithic heterogeneous multiscale method, the nonlinear macroscale problem is solved using the Newton--Raphson scheme. The resolution of many mesoscale problems per Gauss point allows to compute the homogenized constitutive law and its derivative by finite differences. In the proposed approach, the macroscale problem and the mesoscale problems are weakly coupled and solved separately using the finite element method on time intervals for several waveform relaxation iterations. The exchange of information between both problems is still carried out using the heterogeneous multiscale method. However, the partial derivatives can now be evaluated exactly by solving only one mesoscale problem per Gauss point.Comment: submitted to JC

    Multiscale Finite Element Modeling of Nonlinear Magnetoquasistatic Problems Using Magnetic Induction Conforming Formulations

    Full text link
    In this paper we develop magnetic induction conforming multiscale formulations for magnetoquasistatic problems involving periodic materials. The formulations are derived using the periodic homogenization theory and applied within a heterogeneous multiscale approach. Therefore the fine-scale problem is replaced by a macroscale problem defined on a coarse mesh that covers the entire domain and many mesoscale problems defined on finely-meshed small areas around some points of interest of the macroscale mesh (e.g. numerical quadrature points). The exchange of information between these macro and meso problems is thoroughly explained in this paper. For the sake of validation, we consider a two-dimensional geometry of an idealized periodic soft magnetic composite.Comment: Paper accepted for publication in the SIAM MMS journa

    A Generalized Multiscale Finite Element Method for Poroelasticity Problems I: Linear Problems

    Get PDF
    In this paper, we consider the numerical solution of poroelasticity problems that are of Biot type and develop a general algorithm for solving coupled systems. We discuss the challenges associated with mechanics and flow problems in heterogeneous media. The two primary issues being the multiscale nature of the media and the solutions of the fluid and mechanics variables traditionally developed with separate grids and methods. For the numerical solution we develop and implement a Generalized Multiscale Finite Element Method (GMsFEM) that solves problem on a coarse grid by constructing local multiscale basis functions. The procedure begins with construction of multiscale bases for both displacement and pressure in each coarse block. Using a snapshot space and local spectral problems, we construct a basis of reduced dimension. Finally, after multiplying by a multiscale partitions of unity, the multiscale basis is constructed in the offline phase and the coarse grid problem then can be solved for arbitrary forcing and boundary conditions. We implement this algorithm on two heterogenous media and compute error between the multiscale solution with the fine-scale solutions. Randomized oversampling and forcing strategies are also tested.Comment: arXiv admin note: text overlap with arXiv:1309.6030 by other author

    On Multiscale Methods in Petrov-Galerkin formulation

    Full text link
    In this work we investigate the advantages of multiscale methods in Petrov-Galerkin (PG) formulation in a general framework. The framework is based on a localized orthogonal decomposition of a high dimensional solution space into a low dimensional multiscale space with good approximation properties and a high dimensional remainder space{, which only contains negligible fine scale information}. The multiscale space can then be used to obtain accurate Galerkin approximations. As a model problem we consider the Poisson equation. We prove that a Petrov-Galerkin formulation does not suffer from a significant loss of accuracy, and still preserve the convergence order of the original multiscale method. We also prove inf-sup stability of a PG Continuous and a Discontinuous Galerkin Finite Element multiscale method. Furthermore, we demonstrate that the Petrov-Galerkin method can decrease the computational complexity significantly, allowing for more efficient solution algorithms. As another application of the framework, we show how the Petrov-Galerkin framework can be used to construct a locally mass conservative solver for two-phase flow simulation that employs the Buckley-Leverett equation. To achieve this, we couple a PG Discontinuous Galerkin Finite Element method with an upwind scheme for a hyperbolic conservation law

    A multiscale flux basis for mortar mixed discretizations of reduced Darcy-Forchheimer fracture models

    Get PDF
    In this paper, a multiscale flux basis algorithm is developed to efficiently solve a flow problem in fractured porous media. Here, we take into account a mixed-dimensional setting of the discrete fracture matrix model, where the fracture network is represented as lower-dimensional object. We assume the linear Darcy model in the rock matrix and the non-linear Forchheimer model in the fractures. In our formulation, we are able to reformulate the matrix-fracture problem to only the fracture network problem and, therefore, significantly reduce the computational cost. The resulting problem is then a non-linear interface problem that can be solved using a fixed-point or Newton-Krylov methods, which in each iteration require several solves of Robin problems in the surrounding rock matrices. To achieve this, the flux exchange (a linear Robin-to-Neumann co-dimensional mapping) between the porous medium and the fracture network is done offline by pre-computing a multiscale flux basis that consists of the flux response from each degree of freedom on the fracture network. This delivers a conserve for the basis that handles the solutions in the rock matrices for each degree of freedom in the fractures pressure space. Then, any Robin sub-domain problems are replaced by linear combinations of the multiscale flux basis during the interface iteration. The proposed approach is, thus, agnostic to the physical model in the fracture network. Numerical experiments demonstrate the computational gains of pre-computing the flux exchange between the porous medium and the fracture network against standard non-linear domain decomposition approaches
    corecore