11,847 research outputs found
Multiscale approach to radiation damage induced by ion beams: complex DNA damage and effects of thermal spikes
We present the latest advances of the multiscale approach to radiation damage
caused by irradiation of a tissue with energetic ions and report the most
recent advances in the calculations of complex DNA damage and the effects of
thermal spikes on biomolecules. The multiscale approach aims to quantify the
most important physical, chemical, and biological phenomena taking place during
and following irradiation with ions and provide a better means for
clinically-necessary calculations with adequate accuracy. We suggest a way of
quantifying the complex clustered damage, one of the most important features of
the radiation damage caused by ions. This method can be used for the
calculation of irreparable DNA damage. We include thermal spikes, predicted to
occur in tissue for a short time after ion's passage in the vicinity of the
ions' tracks in our previous work, into modeling of the thermal environment for
molecular dynamics analysis of ubiquitin and discuss the first results of these
simulations.Comment: 14 pages, 3 figures, submitted to EPJ
A multiscale constitutive model for intergranular stress corrosion cracking in type 304 austenitic stainless steel
Intergranular stress corrosion cracking (IGSCC) is a fracture mechanism in sensitised austenitic stainless steels exposed to critical environments where the intergranular cracks extends along the network of connected susceptible grain boundaries. A constitutive model is presented to estimate the maximum intergranular crack growth by taking into consideration the materials mechanical properties and microstructure characters distribution. This constitutive model is constructed based on the assumption that each grain is a two phase material comprising of grain interior and grain boundary zone. The inherent micro-mechanisms active in the grain interior during IGSCC is based on crystal plasticity theory, while the grain boundary zone has been modelled by proposing a phenomenological constitutive model motivated from cohesive zone modelling approach. Overall, response of the representative volume is calculated by volume averaging of individual grain behaviour. Model is assessed by performing rigorous parametric studies, followed by validation and verification of the proposed constitutive model using representative volume element based FE simulations reported in the literature. In the last section, model application is demonstrated using intergranular stress corrosion cracking experiments which shows a good agreement
Multiscale analysis of the effect of debris on fretting wear process using a semi-concurrent method
Fretting wear is a phenomenon, in which wear happens between two oscillatory moving contact surfaces in microscale amplitude. In this paper, the effect of debris between pad and specimen is analyzed by using a semi-concurrent multiscale method. Firstly, the macroscale fretting wear model is performed. Secondly, the part with the wear profile is imported from the macroscale model to a microscale model after running in stage. Thirdly, an effective pad's radius is extracted by analyzing the contact pressure in order to take into account the effect of the debris. Finally, the effective radius is up-scaled from the microscale model to the macroscale model, which is used after running in stage. In this way, the effect of debris is considered by changing the radius of the pad in the macroscale model. Due to the smaller number of elements in the microscale model compared with the macroscale model containing the debris layer, the semi-concurrent method proposed in this paper is more computationally efficient. Moreover, the results of this semi-concurrent method show a better agreement with experimental data, compared to the results of the model ignoring the effect of debris
Review of the Synergies Between Computational Modeling and Experimental Characterization of Materials Across Length Scales
With the increasing interplay between experimental and computational
approaches at multiple length scales, new research directions are emerging in
materials science and computational mechanics. Such cooperative interactions
find many applications in the development, characterization and design of
complex material systems. This manuscript provides a broad and comprehensive
overview of recent trends where predictive modeling capabilities are developed
in conjunction with experiments and advanced characterization to gain a greater
insight into structure-properties relationships and study various physical
phenomena and mechanisms. The focus of this review is on the intersections of
multiscale materials experiments and modeling relevant to the materials
mechanics community. After a general discussion on the perspective from various
communities, the article focuses on the latest experimental and theoretical
opportunities. Emphasis is given to the role of experiments in multiscale
models, including insights into how computations can be used as discovery tools
for materials engineering, rather than to "simply" support experimental work.
This is illustrated by examples from several application areas on structural
materials. This manuscript ends with a discussion on some problems and open
scientific questions that are being explored in order to advance this
relatively new field of research.Comment: 25 pages, 11 figures, review article accepted for publication in J.
Mater. Sc
Nanovoid nucleation by vacancy aggregation and vacancy-cluster coarsening in high-purity metallic single crystals
A numerical model to estimate critical times required for nanovoid nucleation in high-purity aluminum single crystals subjected to shock loading is presented. We regard a nanovoid to be nucleated when it attains a size sufficient for subsequent growth by dislocation-mediated plasticity. Nucleation is assumed to proceed by means of diffusion-mediated vacancy aggregation and subsequent vacancy cluster coarsening. Nucleation times are computed by a combination of lattice kinetic Monte Carlo simulations and simple estimates of nanovoid cavitation pressures and vacancy concentrations. The domain of validity of the model is established by considering rate-limiting physical processes and theoretical strength limits. The computed nucleation times are compared to experiments suggesting that vacancy aggregation and cluster coarsening are feasible mechanisms of nanovoid nucleation in a specific subdomain of the pressure-strain rate-temperature space
- …
