355 research outputs found

    Semantic Segmentation of Pathological Lung Tissue with Dilated Fully Convolutional Networks

    Full text link
    Early and accurate diagnosis of interstitial lung diseases (ILDs) is crucial for making treatment decisions, but can be challenging even for experienced radiologists. The diagnostic procedure is based on the detection and recognition of the different ILD pathologies in thoracic CT scans, yet their manifestation often appears similar. In this study, we propose the use of a deep purely convolutional neural network for the semantic segmentation of ILD patterns, as the basic component of a computer aided diagnosis (CAD) system for ILDs. The proposed CNN, which consists of convolutional layers with dilated filters, takes as input a lung CT image of arbitrary size and outputs the corresponding label map. We trained and tested the network on a dataset of 172 sparsely annotated CT scans, within a cross-validation scheme. The training was performed in an end-to-end and semi-supervised fashion, utilizing both labeled and non-labeled image regions. The experimental results show significant performance improvement with respect to the state of the art

    Invariant Scattering Transform for Medical Imaging

    Full text link
    Over the years, the Invariant Scattering Transform (IST) technique has become popular for medical image analysis, including using wavelet transform computation using Convolutional Neural Networks (CNN) to capture patterns' scale and orientation in the input signal. IST aims to be invariant to transformations that are common in medical images, such as translation, rotation, scaling, and deformation, used to improve the performance in medical imaging applications such as segmentation, classification, and registration, which can be integrated into machine learning algorithms for disease detection, diagnosis, and treatment planning. Additionally, combining IST with deep learning approaches has the potential to leverage their strengths and enhance medical image analysis outcomes. This study provides an overview of IST in medical imaging by considering the types of IST, their application, limitations, and potential scopes for future researchers and practitioners

    Ultrasound image processing in the evaluation of labor induction failure risk

    Get PDF
    Labor induction is defined as the artificial stimulation of uterine contractions for the purpose of vaginal birth. Induction is prescribed for medical and elective reasons. Success in labor induction procedures is related to vaginal delivery. Cesarean section is one of the potential risks of labor induction as it occurs in about 20% of the inductions. A ripe cervix (soft and distensible) is needed for a successful labor. During the ripening cervical, tissues experience micro structural changes: collagen becomes disorganized and water content increases. These changes will affect the interaction between cervical tissues and sound waves during ultrasound transvaginal scanning and will be perceived as gray level intensity variations in the echographic image. Texture analysis can be used to analyze these variations and provide a means to evaluate cervical ripening in a non-invasive way

    LUNG PATTERN CLASSIFICATION VIA DCNN

    Get PDF
    Interstitial lung disease (ILD) causes pulmonary fibrosis. The correct classification of ILD plays a crucial role in the diagnosis and treatment process. In this research work, we disclose a lung nodules recognition method based on a deep convolutional neural network (DCNN) and global features, which can be used for computer-aided diagnosis (CAD) of global features of lung nodules. Firstly, a DCNN is constructed based on the characteristics and complexity of lung computerized tomography (CT) images. Then discussed the effects of different iterations on the recognition results and influence of different model structures on the global features of lung nodules. We also improved the convolution kernel size, feature dimension, and network depth. Finally, the effects of different pooling methods, activation functions and training algorithms on the performance of DCNN were analyzed from the network optimization dimension. The experimental results verify the feasibility of the proposed DCNN for CAD of global features of lung nodules. Selecting appropriate model parameters and model structure and using the elastic momentum training method can achieve good recognition results

    Invariant Scattering Transform for Medical Imaging

    Full text link
    Invariant scattering transform introduces new area of research that merges the signal processing with deep learning for computer vision. Nowadays, Deep Learning algorithms are able to solve a variety of problems in medical sector. Medical images are used to detect diseases brain cancer or tumor, Alzheimer's disease, breast cancer, Parkinson's disease and many others. During pandemic back in 2020, machine learning and deep learning has played a critical role to detect COVID-19 which included mutation analysis, prediction, diagnosis and decision making. Medical images like X-ray, MRI known as magnetic resonance imaging, CT scans are used for detecting diseases. There is another method in deep learning for medical imaging which is scattering transform. It builds useful signal representation for image classification. It is a wavelet technique; which is impactful for medical image classification problems. This research article discusses scattering transform as the efficient system for medical image analysis where it's figured by scattering the signal information implemented in a deep convolutional network. A step by step case study is manifested at this research work.Comment: 11 pages, 8 figures and 1 tabl
    • …
    corecore