826 research outputs found

    Brain Tumor Detection and Segmentation in Multisequence MRI

    Get PDF
    Tato prĂĄce se zabĂœvĂĄ detekcĂ­ a segmentacĂ­ mozkovĂ©ho nĂĄdoru v multisekvenčnĂ­ch MR obrazech se zaměƙenĂ­m na gliomy vysokĂ©ho a nĂ­zkĂ©ho stupně malignity. Jsou zde pro tento Ășčel navrĆŸeny tƙi metody. PrvnĂ­ metoda se zabĂœvĂĄ detekcĂ­ prezence částĂ­ mozkovĂ©ho nĂĄdoru v axiĂĄlnĂ­ch a koronĂĄrnĂ­ch ƙezech. JednĂĄ se o algoritmus zaloĆŸenĂœ na analĂœze symetrie pƙi rĆŻznĂœch rozliĆĄenĂ­ch obrazu, kterĂœ byl otestovĂĄn na T1, T2, T1C a FLAIR obrazech. DruhĂĄ metoda se zabĂœvĂĄ extrakcĂ­ oblasti celĂ©ho mozkovĂ©ho nĂĄdoru, zahrnujĂ­cĂ­ oblast jĂĄdra tumoru a edĂ©mu, ve FLAIR a T2 obrazech. Metoda je schopna extrahovat mozkovĂœ nĂĄdor z 2D i 3D obrazĆŻ. Je zde opět vyuĆŸita analĂœza symetrie, kterĂĄ je nĂĄsledovĂĄna automatickĂœm stanovenĂ­m intenzitnĂ­ho prahu z nejvĂ­ce asymetrickĂœch částĂ­. TƙetĂ­ metoda je zaloĆŸena na predikci lokĂĄlnĂ­ struktury a je schopna segmentovat celou oblast nĂĄdoru, jeho jĂĄdro i jeho aktivnĂ­ část. Metoda vyuĆŸĂ­vĂĄ faktu, ĆŸe větĆĄina lĂ©kaƙskĂœch obrazĆŻ vykazuje vysokou podobnost intenzit sousednĂ­ch pixelĆŻ a silnou korelaci mezi intenzitami v rĆŻznĂœch obrazovĂœch modalitĂĄch. JednĂ­m ze zpĆŻsobĆŻ, jak s touto korelacĂ­ pracovat a pouĆŸĂ­vat ji, je vyuĆŸitĂ­ lokĂĄlnĂ­ch obrazovĂœch polĂ­. PodobnĂĄ korelace existuje takĂ© mezi sousednĂ­mi pixely v anotaci obrazu. Tento pƙíznak byl vyuĆŸit v predikci lokĂĄlnĂ­ struktury pƙi lokĂĄlnĂ­ anotaci polĂ­. Jako klasifikačnĂ­ algoritmus je v tĂ©to metodě pouĆŸita konvolučnĂ­ neuronovĂĄ sĂ­Ć„ vzhledem k jejĂ­ znĂĄme schopnosti zachĂĄzet s korelacĂ­ mezi pƙíznaky. VĆĄechny tƙi metody byly otestovĂĄny na veƙejnĂ© databĂĄzi 254 multisekvenčnĂ­ch MR obrazech a byla dosĂĄhnuta pƙesnost srovnatelnĂĄ s nejmodernějĆĄĂ­mi metodami v mnohem kratĆĄĂ­m vĂœpočetnĂ­m čase (v ƙádu sekund pƙi pouĆŸitĂœ CPU), coĆŸ poskytuje moĆŸnost manuĂĄlnĂ­ch Ășprav pƙi interaktivnĂ­ segmetaci.This work deals with the brain tumor detection and segmentation in multisequence MR images with particular focus on high- and low-grade gliomas. Three methods are propose for this purpose. The first method deals with the presence detection of brain tumor structures in axial and coronal slices. This method is based on multi-resolution symmetry analysis and it was tested for T1, T2, T1C and FLAIR images. The second method deals with extraction of the whole brain tumor region, including tumor core and edema, in FLAIR and T2 images and is suitable to extract the whole brain tumor region from both 2D and 3D. It also uses the symmetry analysis approach which is followed by automatic determination of the intensity threshold from the most asymmetric parts. The third method is based on local structure prediction and it is able to segment the whole tumor region as well as tumor core and active tumor. This method takes the advantage of a fact that most medical images feature a high similarity in intensities of nearby pixels and a strong correlation of intensity profiles across different image modalities. One way of dealing with -- and even exploiting -- this correlation is the use of local image patches. In the same way, there is a high correlation between nearby labels in image annotation, a feature that has been used in the ``local structure prediction'' of local label patches. Convolutional neural network is chosen as a learning algorithm, as it is known to be suited for dealing with correlation between features. All three methods were evaluated on a public data set of 254 multisequence MR volumes being able to reach comparable results to state-of-the-art methods in much shorter computing time (order of seconds running on CPU) providing means, for example, to do online updates when aiming at an interactive segmentation.

    Improvements in the registration of multimodal medical imaging : application to intensity inhomogeneity and partial volume corrections

    Get PDF
    Alignment or registration of medical images has a relevant role on clinical diagnostic and treatment decisions as well as in research settings. With the advent of new technologies for multimodal imaging, robust registration of functional and anatomical information is still a challenge, particular in small-animal imaging given the lesser structural content of certain anatomical parts, such as the brain, than in humans. Besides, patient-dependent and acquisition artefacts affecting the images information content further complicate registration, as is the case of intensity inhomogeneities (IIH) showing in MRI and the partial volume effect (PVE) attached to PET imaging. Reference methods exist for accurate image registration but their performance is severely deteriorated in situations involving little images Overlap. While several approaches to IIH and PVE correction exist these methods still do not guarantee or rely on robust registration. This Thesis focuses on overcoming current limitations af registration to enable novel IIH and PVE correction methods.El registre d'imatges mĂšdiques tĂ© un paper rellevant en les decisions de diagnĂČstic i tractament clĂ­niques aixĂ­ com en la recerca. Amb el desenvolupament de noves tecnologies d'imatge multimodal, el registre robust d'informaciĂł funcional i anatĂČmica Ă©s encara avui un repte, en particular, en imatge de petit animal amb un menor contingut estructural que en humans de certes parts anatĂČmiques com el cervell. A mĂ©s, els artefactes induĂŻts pel propi pacient i per la tĂšcnica d'adquisiciĂł que afecten el contingut d'informaciĂł de les imatges complica encara mĂ©s el procĂ©s de registre. És el cas de les inhomogeneĂŻtats d'intensitat (IIH) que apareixen a les RM i de l'efecte de volum parcial (PVE) caracterĂ­stic en PET. Tot i que existeixen mĂštodes de referĂšncia pel registre acurat d'imatges la seva eficĂ cia es veu greument minvada en casos de poc solapament entre les imatges. De la mateixa manera, tambĂ© existeixen mĂštodes per la correcciĂł d'IIH i de PVE perĂČ que no garanteixen o que requereixen un registre robust. Aquesta tesi es centra en superar aquestes limitacions sobre el registre per habilitar nous mĂštodes per la correcciĂł d'IIH i de PVE

    Medical Image Segmentation Based on Multi-Modal Convolutional Neural Network: Study on Image Fusion Schemes

    Full text link
    Image analysis using more than one modality (i.e. multi-modal) has been increasingly applied in the field of biomedical imaging. One of the challenges in performing the multimodal analysis is that there exist multiple schemes for fusing the information from different modalities, where such schemes are application-dependent and lack a unified framework to guide their designs. In this work we firstly propose a conceptual architecture for the image fusion schemes in supervised biomedical image analysis: fusing at the feature level, fusing at the classifier level, and fusing at the decision-making level. Further, motivated by the recent success in applying deep learning for natural image analysis, we implement the three image fusion schemes above based on the Convolutional Neural Network (CNN) with varied structures, and combined into a single framework. The proposed image segmentation framework is capable of analyzing the multi-modality images using different fusing schemes simultaneously. The framework is applied to detect the presence of soft tissue sarcoma from the combination of Magnetic Resonance Imaging (MRI), Computed Tomography (CT) and Positron Emission Tomography (PET) images. It is found from the results that while all the fusion schemes outperform the single-modality schemes, fusing at the feature level can generally achieve the best performance in terms of both accuracy and computational cost, but also suffers from the decreased robustness in the presence of large errors in any image modalities.Comment: Zhe Guo and Xiang Li contribute equally to this wor

    Wavelet Features for Recognition of First Episode of Schizophrenia from MRI Brain Images

    Get PDF
    Machine learning methods are increasingly used in various fields of medicine, contributing to early diagnosis and better quality of care. These outputs are particularly desirable in case of neuropsychiatric disorders, such as schizophrenia, due to the inherent potential for creating a new gold standard in the diagnosis and differentiation of particular disorders. This paper presents a scheme for automated classification from magnetic resonance images based on multiresolution representation in the wavelet domain. Implementation of the proposed algorithm, utilizing support vector machines classifier, is introduced and tested on a dataset containing 104 patients with first episode schizophrenia and healthy volunteers. Optimal parameters of different phases of the algorithm are sought and the quality of classification is estimated by robust cross validation techniques. Values of accuracy, sensitivity and specificity over 71% are achieved

    Advances in Stochastic Medical Image Registration

    Get PDF

    Bayesian Spatial Binary Regression for Label Fusion in Structural Neuroimaging

    Full text link
    Many analyses of neuroimaging data involve studying one or more regions of interest (ROIs) in a brain image. In order to do so, each ROI must first be identified. Since every brain is unique, the location, size, and shape of each ROI varies across subjects. Thus, each ROI in a brain image must either be manually identified or (semi-) automatically delineated, a task referred to as segmentation. Automatic segmentation often involves mapping a previously manually segmented image to a new brain image and propagating the labels to obtain an estimate of where each ROI is located in the new image. A more recent approach to this problem is to propagate labels from multiple manually segmented atlases and combine the results using a process known as label fusion. To date, most label fusion algorithms either employ voting procedures or impose prior structure and subsequently find the maximum a posteriori estimator (i.e., the posterior mode) through optimization. We propose using a fully Bayesian spatial regression model for label fusion that facilitates direct incorporation of covariate information while making accessible the entire posterior distribution. We discuss the implementation of our model via Markov chain Monte Carlo and illustrate the procedure through both simulation and application to segmentation of the hippocampus, an anatomical structure known to be associated with Alzheimer's disease.Comment: 24 pages, 10 figure

    AUTOMATIC 3D DEFORMED MIDSAGITTAL SURFACE LOCALIZATION BY CONSTRAINED MONTE CARLO OPTIMIZATION

    Get PDF
    AUTOMATIC 3D DEFORMED MIDSAGITTAL SURFACE LOCALIZATION BY CONSTRAINED MONTE CARLO OPTIMIZATIO
    • 

    corecore