44,789 research outputs found

    NMR relaxation rate and dynamical structure factors in nematic and multipolar liquids of frustrated spin chains under magnetic fields

    Full text link
    Recently, it has been shown that spin nematic (quadrupolar) or higher multipolar correlation functions exhibit a quasi long-range order in the wide region of the field-induced Tomonaga-Luttinger-liquid (TLL) phase in spin-1/2 zigzag chains. In this paper, we point out that the temperature dependence of the NMR relaxation rate 1/T_1 in these multipolar TLLs is qualitatively different from that in more conventional TLLs of one-dimensional quantum magnets (e.g., the spin-1/2 Heisenberg chain); 1/T_1 decreases with lowering temperature in multipolar TLL. We also discuss low-energy features in spin dynamical structure factors which are characteristic of the multipolar TLL phases.Comment: 4+epsilon pages, 2 figures, published versio

    In search of multipolar order on the Penrose tiling

    Full text link
    Based on Monte Carlo calculations, multipolar ordering on the Penrose tiling, relevant for two-dimensional molecular adsorbates on quasicrystalline surfaces and for nanomagnetic arrays, has been analyzed. These initial investigations are restricted to multipolar rotors of rank one through four - described by spherical harmonics Ylm with l=1...4 and restricted to m=0 - positioned on the vertices of the rhombic Penrose tiling. At first sight, the ground states of odd-parity multipoles seem to exhibit long-range multipolar order, indicated by the appearance of a superstructure in the form of the decagonal Hexagon-Boat-Star tiling, in agreement with previous investigations of dipolar systems. Yet careful analysis establishes that long-range multipolar order is absent in all cases investigated here, and only short-range order exists. This result should be taken as a warning for any future analysis of order in either real or simulated arrangements of multipoles on quasiperiodic templates

    Multipolar Planetary Nebulae: Not as Geometrically Diversified as Thought

    Get PDF
    Planetary nebulae (PNe) have diverse morphological shapes, including point-symmetric and multipolar structures. Many PNe also have complicated internal structures such as torus, lobes, knots, and ansae. A complete accounting of all the morphological structures through physical models is difficult. A first step toward such an understanding is to derive the true three-dimensional structure of the nebulae. In this paper, we show that a multipolar nebula with three pairs of lobes can explain many of such features, if orientation and sensitivity effects are taken into account. Using only six parameters - the inclination and position angles of each pair - we are able to simulate the observed images of 20 PNe with complex structures. We suggest that the multipolar structure is an intrinsic structure of PNe and the statistics of multipolar PNe has been severely underestimated in the past.Comment: 36 pages, 5 figures, 2 table

    Emergent multipolar spin correlations in a fluctuating spiral - The frustrated ferromagnetic S=1/2 Heisenberg chain in a magnetic field

    Full text link
    We present the phase diagram of the frustrated ferromagnetic S=1/2 Heisenberg J_1-J_2 chain in a magnetic field, obtained by large scale exact diagonalizations and density matrix renormalization group simulations. A vector chirally ordered state, metamagnetic behavior and a sequence of spin-multipolar Luttinger liquid phases up to hexadecupolar kind are found. We provide numerical evidence for a locking mechanism, which can drive spiral states towards spin-multipolar phases, such as quadrupolar or octupolar phases. Our results also shed light on previously discovered spin-multipolar phases in two-dimensional S=1/2S=1/2 quantum magnets in a magnetic field.Comment: 4+ pages, 4 figure
    • …
    corecore