122,866 research outputs found

    On the uniform perfectness of the boundary of multiply connected wandering domains

    Full text link
    We investigate in which cases the boundary of a multiply connected wandering domain of an entire function is uniformly perfect. We give a general criterion implying that it is not uniformly perfect. This criterion applies in particular to examples of multiply connected wandering domains given by Baker. We also provide examples of infinitely connected wandering domains whose boundary is uniformly perfect.Comment: 19 page

    The Green's function and the Ahlfors map

    Full text link
    The classical Green's function associated to a simply connected domain in the complex plane is easily expressed in terms of a Riemann mapping function. The purpose of this paper is to express the Green's function of a finitely connected domain in the plane in terms of a single Ahlfors mapping of the domain, which is a proper holomorphic mapping of the domain onto the unit disc that is the analogue of the Riemann map in the multiply connected setting.Comment: 14 page

    Numerical computation of the conformal map onto lemniscatic domains

    Full text link
    We present a numerical method for the computation of the conformal map from unbounded multiply-connected domains onto lemniscatic domains. For \ell-times connected domains the method requires solving \ell boundary integral equations with the Neumann kernel. This can be done in O(2nlogn)O(\ell^2 n \log n) operations, where nn is the number of nodes in the discretization of each boundary component of the multiply connected domain. As demonstrated by numerical examples, the method works for domains with close-to-touching boundaries, non-convex boundaries, piecewise smooth boundaries, and for domains of high connectivity.Comment: Minor revision; simplified Example 6.1, and changed Example 6.2 to a set without symmetr
    corecore