3,293 research outputs found

    Finite Volume Spaces and Sparsification

    Full text link
    We introduce and study finite dd-volumes - the high dimensional generalization of finite metric spaces. Having developed a suitable combinatorial machinery, we define 1\ell_1-volumes and show that they contain Euclidean volumes and hypertree volumes. We show that they can approximate any dd-volume with O(nd)O(n^d) multiplicative distortion. On the other hand, contrary to Bourgain's theorem for d=1d=1, there exists a 22-volume that on nn vertices that cannot be approximated by any 1\ell_1-volume with distortion smaller than Ω~(n1/5)\tilde{\Omega}(n^{1/5}). We further address the problem of 1\ell_1-dimension reduction in the context of 1\ell_1 volumes, and show that this phenomenon does occur, although not to the same striking degree as it does for Euclidean metrics and volumes. In particular, we show that any 1\ell_1 metric on nn points can be (1+ϵ)(1+ \epsilon)-approximated by a sum of O(n/ϵ2)O(n/\epsilon^2) cut metrics, improving over the best previously known bound of O(nlogn)O(n \log n) due to Schechtman. In order to deal with dimension reduction, we extend the techniques and ideas introduced by Karger and Bencz{\'u}r, and Spielman et al.~in the context of graph Sparsification, and develop general methods with a wide range of applications.Comment: previous revision was the wrong file: the new revision: changed (extended considerably) the treatment of finite volumes (see revised abstract). Inserted new applications for the sparsification technique

    Harmonic functions on multiplicative graphs and interpolation polynomials

    Get PDF
    We construct examples of nonnegative harmonic functions on certain graded graphs: the Young lattice and its generalizations. Such functions first emerged in harmonic analysis on the infinite symmetric group. Our method relies on multivariate interpolation polynomials associated with Schur's S and P functions and with Jack symmetric functions. As a by-product, we compute certain Selberg-type integrals.Comment: AMSTeX, 35 page

    The totally nonnegative Grassmannian is a ball

    Full text link
    We prove that three spaces of importance in topological combinatorics are homeomorphic to closed balls: the totally nonnegative Grassmannian, the compactification of the space of electrical networks, and the cyclically symmetric amplituhedron.Comment: 19 pages. v2: Exposition improved in many place

    On the orthogonal rank of Cayley graphs and impossibility of quantum round elimination

    Get PDF
    After Bob sends Alice a bit, she responds with a lengthy reply. At the cost of a factor of two in the total communication, Alice could just as well have given the two possible replies without listening and have Bob select which applies to him. Motivated by a conjecture stating that this form of "round elimination" is impossible in exact quantum communication complexity, we study the orthogonal rank and a symmetric variant thereof for a certain family of Cayley graphs. The orthogonal rank of a graph is the smallest number dd for which one can label each vertex with a nonzero dd-dimensional complex vector such that adjacent vertices receive orthogonal vectors. We show an exp(n)(n) lower bound on the orthogonal rank of the graph on {0,1}n\{0,1\}^n in which two strings are adjacent if they have Hamming distance at least n/2n/2. In combination with previous work, this implies an affirmative answer to the above conjecture.Comment: 13 page
    corecore