15,758 research outputs found

    Faster polynomial multiplication over finite fields

    Full text link
    Let p be a prime, and let M_p(n) denote the bit complexity of multiplying two polynomials in F_p[X] of degree less than n. For n large compared to p, we establish the bound M_p(n) = O(n log n 8^(log^* n) log p), where log^* is the iterated logarithm. This is the first known F\"urer-type complexity bound for F_p[X], and improves on the previously best known bound M_p(n) = O(n log n log log n log p)

    On the complexity of computing with zero-dimensional triangular sets

    Get PDF
    We study the complexity of some fundamental operations for triangular sets in dimension zero. Using Las-Vegas algorithms, we prove that one can perform such operations as change of order, equiprojectable decomposition, or quasi-inverse computation with a cost that is essentially that of modular composition. Over an abstract field, this leads to a subquadratic cost (with respect to the degree of the underlying algebraic set). Over a finite field, in a boolean RAM model, we obtain a quasi-linear running time using Kedlaya and Umans' algorithm for modular composition. Conversely, we also show how to reduce the problem of modular composition to change of order for triangular sets, so that all these problems are essentially equivalent. Our algorithms are implemented in Maple; we present some experimental results

    Faster truncated integer multiplication

    Full text link
    We present new algorithms for computing the low n bits or the high n bits of the product of two n-bit integers. We show that these problems may be solved in asymptotically 75% of the time required to compute the full 2n-bit product, assuming that the underlying integer multiplication algorithm relies on computing cyclic convolutions of real sequences.Comment: 28 page

    A Non-commutative Cryptosystem Based on Quaternion Algebras

    Full text link
    We propose BQTRU, a non-commutative NTRU-like cryptosystem over quaternion algebras. This cryptosystem uses bivariate polynomials as the underling ring. The multiplication operation in our cryptosystem can be performed with high speed using quaternions algebras over finite rings. As a consequence, the key generation and encryption process of our cryptosystem is faster than NTRU in comparable parameters. Typically using Strassen's method, the key generation and encryption process is approximately 16/716/7 times faster than NTRU for an equivalent parameter set. Moreover, the BQTRU lattice has a hybrid structure that makes inefficient standard lattice attacks on the private key. This entails a higher computational complexity for attackers providing the opportunity of having smaller key sizes. Consequently, in this sense, BQTRU is more resistant than NTRU against known attacks at an equivalent parameter set. Moreover, message protection is feasible through larger polynomials and this allows us to obtain the same security level as other NTRU-like cryptosystems but using lower dimensions.Comment: Submitted for possible publicatio

    On the image of a noncommutative polynomial

    Full text link
    Let FF be an algebraically closed field of characteristic zero. We consider the question which subsets of Mn(F)M_n(F) can be images of noncommutative polynomials. We prove that a noncommutative polynomial ff has only finitely many similarity orbits modulo nonzero scalar multiplication in its image if and only if ff is power-central. The union of the zero matrix and a standard open set closed under conjugation by GLn(F)GL_n(F) and nonzero scalar multiplication is shown to be the image of a noncommutative polynomial. We investigate the density of the images with respect to the Zariski topology. We also answer Lvov's conjecture for multilinear Lie polynomials of degree at most 4 affirmatively.Comment: 13 pages, accepted for publication in J. Algebr
    • …
    corecore