34,784 research outputs found

    Multiplication by rational constants: LIP research report 2011-3

    Get PDF
    International audienceMultiplications by simple rational constants often appear in fixed-point or floating-point application code, for instance in the form of division by an integer constant. The hardware implementation of such operations is of practical interest to FPGA-accelerated computing. It is well known that the binary representation of rational constants is eventually periodic. This article shows how this feature can be exploited to implement multiplication by a rational constant in a number of additions that is logarithmic in the precision. An open-source implementation of these techniques is provided, and is shown to be practically relevant for constants with small numerators and denominators, where it provides improvements of 20 to 40\% in area with respect to the state of the art. It is also shown that for such constants, the additional cost for a correctly rounded result is very small, and that correct rounding very often comes for free in practice

    Fusion Residues

    Full text link
    We discuss when and how the Verlinde dimensions of a rational conformal field theory can be expressed as correlation functions in a topological LG theory. It is seen that a necessary condition is that the RCFT fusion rules must exhibit an extra symmetry. We consider two particular perturbations of the Grassmannian superpotentials. The topological LG residues in one perturbation, introduced by Gepner, are shown to be a twisted version of the SU(N)kSU(N)_k Verlinde dimensions. The residues in the other perturbation are the twisted Verlinde dimensions of another RCFT; these topological LG correlation functions are conjectured to be the correlation functions of the corresponding Grassmannian topological sigma model with a coupling in the action to instanton number.Comment: 16 page

    Rational matrix pseudodifferential operators

    Get PDF
    The skewfield K(d) of rational pseudodifferential operators over a differential field K is the skewfield of fractions of the algebra of differential operators K[d]. In our previous paper we showed that any H from K(d) has a minimal fractional decomposition H=AB^(-1), where A,B are elements of K[d], B is non-zero, and any common right divisor of A and B is a non-zero element of K. Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-zero element of K[d]. In the present paper we study the ring M_n(K(d)) of nxn matrices over the skewfield K(d). We show that similarly, any H from M_n(K(d)) has a minimal fractional decomposition H=AB^(-1), where A,B are elements of M_n(K[d]), B is non-degenerate, and any common right divisor of A and B is an invertible element of the ring M_n(K[d]). Moreover, any right fractional decomposition of H is obtained by multiplying A and B on the right by the same non-degenerate element of M_n(K [d]). We give several equivalent definitions of the minimal fractional decomposition. These results are applied to the study of maximal isotropicity property, used in the theory of Dirac structures.Comment: 20 page
    • …
    corecore